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Topics to be discussed

® Interpretations of fractional-order operators

® Numerical fractional differentiation and numerical solution of FDEs

® Matrix approach: from CO toVO to DO

® Building fractional-order models: fitting using the Mittag-Leffler function
® “Least circles” method

® Related Matlab toolboxes

® Applications
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“Fractional-order” physics?

Hooke’s law: F=kx
Newton’s fluid: F=kx' —» F()=kx ()
Newton’s 2™ |aw: F=kx"
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Diffusion-wave equation: =
d e ox?

Fractional Calculus: a response to S&T needs
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Rapid development and numerous applications

Number of articles on fractional calculus and its applications in Web of Knowledge
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Rapid development and numerous applications

Number of articles in WoS

The current map of the fractional calculus
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Most used definitions of fractional differentiation

Riemann-Liouville, 1920s: DY f(t) =

(Letnikov, 1870s)

Caputo, 1967:

Miller-Ross, 1990s
(Dzhrbashyan, 1960s)

Griinwald-Letnikov, 1860s

(Liouville, 1830s)

t
1 d " f(r)dr
T(n—a) \dt (t — 7)ya—ntl’

(n—1<a<n)

For feC™a,b], f®(a)=0(k=0,...,n—1)
R-L, C, M-R and G-L definitions
are equivalent




Left- and right-sided derivatives
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Geometric interpretation
of fractional integration:
shadows on the walls

oI f( / f)(t—7)tdr, t>0,
0[“ /f dgr
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For t; = kt, 71 = k7 (k > 0) we have:

gr.(ﬂ) = gkt(k"') = k"g,,(T)

“Live fence” and its shadows: oI} f(t) a oI f(t),
for = 0.75, f(t) =t +0.5sin(t), 0 <t < 10.
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“Live fence”: basis shape is changing
for oI f(t), « = 0.75,0 < t < 10.
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Snapshots of the changing “shadow” of changing “fence” for
olff(t), a=0.75, f(t) =t + 0.5sin(t), with the time
interval At = 0.5 between the snapshops.

Right-sided R-L integral
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Riesz potential
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What is “time”?

L. Newton (Principia Mat., 1686): introduced “mathemati-
cal time”:

“Absolute, true and mathematical time of itself, and
from its own nature, flows equably without relation
to anything external.”

G. J. Whitrow (The Natural Philosophy of Time, 1961):

“The outstanding mathematical achievement associ-
ated with the geometrization of time was, of course,
the invention of the calculus of fluxions by Newton.”

“Mathematically, Newton seems to have found
support for his belief in absolute time by the need,
in principle, for an ideal rate-measurer.”

How do we measure time intervals?

Only by observing some processes, which we consider as reg-
ularly repeated. G. Clemence (Amer. Scientist, vol. 40,
1952) wrote:

“The measurement of time is essentially a process
of counting. Any recurring phenomenon whatever,
the occurences of which can be counted, is in fact a
measure of time.”

What is “time”?

|
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Computing the distance when the time is slowing down

Person N | Recorded values Observer O
individual | of velocity [m/s] | absolute (cosmic)
“seconds” “seconds”

0 10 0

1 11 1

2 12 3

3 13 7

4 12 15

5 11 31

6 10 63

7 9 127

Dy=10-1411-1412-1+13-1+12-1+11-1+10-1 = T79.
Do = 10-14+11-2+12-4+13-8+12-16+11-32+10-64 = 1368.

Physical interpretation
of Stieltjes integral (1)

Imagine a car equipped with two devices for measurements:
the speedometer recording the velocity v(7), and the clock
which should show the time 7. The clock, however, shows
the time incorrectly.

Suppose that the relationship between the wrong time 7,
shown by the clock and considered by the driver A as the
correct time, and the true time T, on the other, is described
by the function T = g(7).

Physical interpretation
of Stieltjes integral (2)

Driver A’s computations:

Sa(t) = / ol(r)dr .

Well-informed observer O’s computations:
t

Solt) = [ utr)dg(r)

0

This example shows that the Stieltjes integral can be inter-
preted as the real distance passed by a moving object, for
which we have recorded correct values of speed and incorrect
values of time; the relationship between the wrongly recorded
time 7 and the correct time 7' is given by a known function
T = g(7).




Physical interpretation of
the Riemann-Liouville integral:
“shadows of the past”

+

So(t) = /'U(T) dg(r) = olfv(t),

0

1 s «

alr) = g — (= 7Y
The left-sided Riemann-Liouville fractional integral of the
individual speed v(7) of a moving object, for which the rela-
tionship between its individual time 7 and the cosmic time
T at each individual time instance ¢ is given by the known
function T = ¢,(7), represents the real distance Sp(t) passed
by that object.

Interpretations of
the Volterra integrals
t
K= f(t)= /f(‘r)k(t —T7)dT
0
Assuming that k(t) = K'(t), this integral takes the form:
t
K f0) = [ f(r)dair)
0
@(1)=K(t)— K({t—rT).
The geometric and physical interpretations of the Volterra

convolution integral are then similar to the suggested inter-
pretations for fractional integrals.

Physical interpretation of initial conditions for
fractional differential equations with the
Riemann-Liouville fractional derivatives

Recall the Laplace transform method
for fractional differential equations

t=0"

0 n—1
/ ¢ oDFf(1) dt = s F(s) = Y s* [oDF 1 f(1)]
0 k=0

(n—1<a<mn).

k! pe—~

ak+pB—1 (k) «a -
¢ E B(iZt) = (p* Fa)ktl
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The Laplace transform method for FDEs

EXAMPLE I.
WDPf+af =0, @>0r  [oDP0)],  =C

Solution: applying the Laplace transform we obtain

C
PO =are

¢ =[oD71(0))

t=0

and the inverse Laplace transform gives the solution:

f(t) = Ot PEy 1 (~aVh).
If a=1,then .
ft)=C(—= — eterfc(\/Z))

vt

The Laplace transform method for FDEs
EXAMPLE 2.

oDfy(t) — Ay(t) = h(t), (t>0);
[P y(0)] _ =be (k=12 Jn)

=0

n—1<a<n.

Solution: applying the Laplace transform:
V() = AV(5) = H(s) + 3 st
k=1
H(s) n k=1

Y(S)= o )\+Zbk—sa7

k=1

and the inverse transform gives the solution:

Y(t) = 3 bt By g (M) + /(t ) B o (At — 7)) h(r)dr
k=1 0




We deal with the Riemann-Liouville derivatives (n — 1 < a < n):

1 (d)”L f(r)dr

oDEf(®) = Fln— o) \dt ] G—e—tr

Fractional differential equations in terms of RL derivatives require ini-
tial conditions expressed in terms of initial values of fractional deriva-
tives of the unknown function.

A typical initial value problem (n — 1 < a < n):
oD f(t) +af(t) = h(t); (t>0)

[OD?*kf(t)]HO:b,c, (k=1,2,...,n).

What about initial conditions?

[DDgiky(t)]::o = bk: (k = l, ey [(1/] + 1)
K. Diethelm, N. J. Ford, A. D. Freed, and Yu. Luchko (January 2005):

“A typical feature of differential equations (both classical and frac-
tional) is the need to specify additional conditions in order to produce a
unique solution. For the case of Caputo FDEs, these additional condi-
tions are just the static initial conditions ..., which are akin to those
of classical ODEs, and are therefore familiar to us. In contrast, for
Riemann-Liouville FDEs, these additional conditions constitute cer-
tain fractional derivatives (and/or integrals) of the unknown solution
at the initial point z = 0 ..., which are functions of z. These ini-
tial conditions are not physical; furthermore, it is not clear how such
quantities are to be measured from experiment, say, so that they can
be appropriately assigned in an analysis.”

N. Heymans and I. Podlubny:
“Physical interpretation of initial conditions for fractional differ-

ential equations with the Riemann-Liouville fractional derivatives”,
Rheologice Acta, vol. 45, no. 5, June 2006, pp. 765-772.

Spring-pot model

Spring-pot is a linear viscoelastic element whose behaviour is interme-
diate between that of elastic element (spring) and a viscous element
(dashpot). The term “spring-pot” was introduced by Koeller (1984),
although the concept of an element with intermediate properties had
been introduced some time earlier (G. W. Scott Blair, 1930s-40s).
The constitutive equation of a spring-pot is:

o(t) = KoDfe(t)  or () = % oDy o (t)

Spring-pot model: Creep

A stress step oq is applied at initial time ¢t = 0. The change of e(t) is
described by the FDE
De(t) = 20
oDfe(t) K
An initial condition involving ODf’le(t) is required. It can be found by
taking the first-order integral of the constitutive equation and letting
t—0

[oDf 7 e(®)],_ o= [0} o0/ K)]

t—0 t—0"
In the considered case stress is finite at all times, therefore the re-
quired IC is

[OD;'*le(z)]Ho =0.

Spring-pot model: Impulse response

An impulse of stress defined as B§(t) applied to the spring-pot at time
t = 0. After that, the stress remains zero. The strain e(t) for t > 0 is
the solution of FDE

oDfe(t) = 0.

An initial condition involving [01—)1 ’1s(t)][ o is required.

This can be found through integration of the constitutive equation,
as

[OD?_le(t)]t‘*O = [ODt_la(t)/K]zﬂo’
which gives the following initial condition:

[oDf~te®)], , = B/K.

The key: look for inseparable twins

In a general case, when we consider some FDE for, say, U(t), we have
to consider also some function V(t), for which some dual relation
exists between U(t) and V(t). For example: stress o(t) and strain
e(t) in viscoelasticity; charge ¢(t) and voltage v(t) in electrical circuits;
temperature difference T'(t) and the heat flux ¢(¢) in heat conduction;
etc. Functions U(t) and V(¢) are normally related by some basic
physical law for the particular field of science.

In each scientific field there are such pairs of functions like the afore-
mentioned, which are as inseparable as Siamese twins: the left-hand
side of the initial condition involves one of them, whereas the evalu-
ation of the right-hand side is related to the other.




