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Topics to be discussed

• Interpretations of fractional-order operators

• Numerical fractional differentiation and numerical solution of FDEs

• Matrix approach:  from CO to VO to DO

• Building fractional-order models: fitting using the Mittag-Leffler function

• “Least circles” method

• Related Matlab toolboxes

• Applications 

Start

�� ��
� �
2 / 90

Back

Full screen

Close

End

Slovakia

Start

�� ��
� �
3 / 90

Back

Full screen

Close

End

Kosice and surroundings

Tatra Mountains

Caves

Is it in the middle of nowhere? Warm-up quiz
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. . . from integer to non-integer . . .
✲

-1-2 0 1 2

xn = x · x · . . . · x� �� �
n

xn = en ln x

n! = 1 · 2 · 3 · . . . · (n− 1) · n,

Γ(x) =

∞�

0

e−ttx−1dt, x > 0,

Γ(n + 1) = 1 · 2 · 3 · . . . · n = n!
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. . . from integer to non-integer . . .

D = 1 D = 2 D = 3

D = 1.26 D = 1.89 D = 2.73
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Interpolation of operations

f,
df

dt
,

d2f

dt2 ,
d3f

dt3 , . . .

f,

�
f (t)dt,

�
dt

�
f (t)dt,

�
dt

�
dt

�
f (t)dt, . . .

. . . ,
d−2f

dt−2 ,
d−1f

dt−1 , f,
df

dt
,

d2f

dt2 , . . .
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We are here

Fractional Calculus: a response to S&T needs



Rapid development and numerous applications
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Classical fitting by exponential

Classical fitting by the Mittag-Leffler
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The current map of the fractional calculus
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Fractional Calculus in WoK:   135 subject areas (applications)

aD
α
t f(t) =

1

Γ(n− α)

�
d

dt

�n t�

a

f(τ) dτ

(t− τ)α−n+1
, (n− 1 ≤ α < n)

C
aD

α
t f(t) =

1

Γ(n− α)

t�

a

f (n)(τ) dτ

(t− τ)α−n+1
, (n− 1 ≤ α < n)

Dαf(t) = Dα1Dα2 . . . Dαnf(t), (α =
n�

k=1

αk; n− 1 ≤ α < n)

Dαf(t) = lim
h→0

h−α

[ t−a
h ]�

k=0

(−1)k
�
α

n

�
f(t− kh)

Riemann–Liouville, 1920s:
(Letnikov, 1870s)

Caputo, 1967:

Miller–Ross, 1990s
(Dzhrbashyan, 1960s)

Grünwald–Letnikov, 1860s
(Liouville, 1830s)

 For
R-L, C, M-R and G-L definitions 

are equivalent

f ∈ C(n)[a, b], f (k)(a) = 0 (k = 0, . . . , n− 1)

Most used definitions of  fractional differentiation



Left- and right-sided derivatives
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Geometric interpretation
of fractional integration:

shadows on the walls

0I
α
t f (t) =

1

Γ(α)

t�

0

f (τ )(t− τ )α−1 dτ, t ≥ 0,

0I
α
t f (t) =

t�

0

f (τ ) dgt(τ ),

gt(τ ) =
1

Γ(α + 1)
{tα − (t− τ )α}.

For t1 = kt, τ1 = kτ (k > 0) we have:

gt1(τ1) = gkt(kτ ) = kαgt(τ ).
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“Live fence” and its shadows: 0I1
t f (t) a 0Iα

t f (t),
for α = 0.75, f (t) = t + 0.5 sin(t), 0 ≤ t ≤ 10.
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“Live fence”: basis shape is changing
for 0Iα

t f (t), α = 0.75, 0 ≤ t ≤ 10.
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Snapshots of the changing “shadow” of changing “fence” for
0Iα

t f (t), α = 0.75, f (t) = t + 0.5 sin(t), with the time
interval ∆t = 0.5 between the snapshops.
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Right-sided R-L integral

tI
α
0 f (t) =

1

Γ(α)

b�

t

f (τ )(τ − t)α−1 dτ, t ≤ b,
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Riesz potential

0R
α
b f (t) =

1

Γ(α)

b�

0

f (τ )|τ − t|α−1 dτ, 0 ≤ t ≤ b,
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What is “time”?
I. Newton (Principia Mat., 1686): introduced “mathemati-
cal time”:

“Absolute, true and mathematical time of itself, and
from its own nature, flows equably without relation
to anything external.”

G. J. Whitrow (The Natural Philosophy of Time, 1961):

“The outstanding mathematical achievement associ-
ated with the geometrization of time was, of course,
the invention of the calculus of fluxions by Newton.”

“Mathematically, Newton seems to have found
support for his belief in absolute time by the need,
in principle, for an ideal rate-measurer.”
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How do we measure time intervals?

Only by observing some processes, which we consider as reg-

ularly repeated. G. Clemence (Amer. Scientist, vol. 40,

1952) wrote:

“The measurement of time is essentially a process

of counting. Any recurring phenomenon whatever,

the occurences of which can be counted, is in fact a

measure of time.”
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What is “time”?

0 1
t

7654311 2

t
3 4 5 6 70

Computing the distance when the time is slowing down

Person N Recorded values Observer O

individual of velocity [m/s] absolute (cosmic)

“seconds” “seconds”

0 10 0

1 11 1

2 12 3

3 13 7

4 12 15

5 11 31

6 10 63

7 9 127

DN = 10 ·1+11 ·1+12 ·1+13 ·1+12 ·1+11 ·1+10 ·1 = 79.

DO = 10·1+11·2+12·4+13·8+12·16+11·32+10·64 = 1368.
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Physical interpretation
of Stieltjes integral (1)

Imagine a car equipped with two devices for measurements:
the speedometer recording the velocity v(τ ), and the clock
which should show the time τ . The clock, however, shows
the time incorrectly.

Suppose that the relationship between the wrong time τ ,
shown by the clock and considered by the driver A as the
correct time, and the true time T , on the other, is described
by the function T = g(τ ).
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Physical interpretation
of Stieltjes integral (2)

Driver A’s computations:

SA(t) =

t�

0

v(τ )dτ .

Well-informed observer O’s computations:

SO(t) =

t�

0

v(τ )dg(τ ).

This example shows that the Stieltjes integral can be inter-
preted as the real distance passed by a moving object, for
which we have recorded correct values of speed and incorrect
values of time; the relationship between the wrongly recorded
time τ and the correct time T is given by a known function
T = g(τ ).
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Physical interpretation of

the Riemann-Liouville integral:

“shadows of the past”

SO(t) =

t�

0

v(τ ) dgt(τ ) = 0I
α
t
v(t),

gt(τ ) =
1

Γ(α + 1)
{tα − (t− τ )α}.

The left-sided Riemann–Liouville fractional integral of the
individual speed v(τ ) of a moving object, for which the rela-
tionship between its individual time τ and the cosmic time
T at each individual time instance t is given by the known
function T = gt(τ ), represents the real distance SO(t) passed
by that object.
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Interpretations of
the Volterra integrals

K ∗ f (t) =

t�

0

f (τ )k(t − τ )dτ

Assuming that k(t) = K �(t), this integral takes the form:

K ∗ f (t) =

t�

0

f (τ )dqt(τ ),

qt(τ ) = K(t) − K(t − τ ).

The geometric and physical interpretations of the Volterra
convolution integral are then similar to the suggested inter-
pretations for fractional integrals.

Physical interpretation of initial conditions for

fractional differential equations with the

Riemann-Liouville fractional derivatives

Nicole Heymans
(1)

, Igor Podlubny
(2)

(1)
Universitè Libre de Bruxelles, Belgium

(2)
Technical University of Kosice, Slovak Republic

April 19, 2005

Recall the Laplace transform method 
for fractional differential equations

34
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The Laplace transform method  for FDEs

EXAMPLE 1.

Solution:  applying  the Laplace transform we obtain

and the inverse Laplace transform gives the solution:

If  a=1, then        

36

The Laplace transform method  for FDEs
EXAMPLE 2.
                                                     ,  

Solution:  applying the Laplace transform:

and the inverse transform gives the solution:



We deal with the Riemann-Liouville derivatives (n− 1 ≤ α < n):

0Dα
t f(t) =

1

Γ(n− α)

�
d

dt

�n t�

0

f(τ) dτ

(t− τ)α−n+1.

Fractional differential equations in terms of RL derivatives require ini-
tial conditions expressed in terms of initial values of fractional deriva-
tives of the unknown function.

A typical initial value problem (n− 1 < α < n):

0Dα
t f(t) + af(t) = h(t); (t > 0)

�
0Dα−k

t f(t)
�

t→0
= bk, (k = 1,2, . . . , n).

1

Spring-pot model

Spring-pot is a linear viscoelastic element whose behaviour is interme-
diate between that of elastic element (spring) and a viscous element
(dashpot). The term “spring-pot” was introduced by Koeller (1984),
although the concept of an element with intermediate properties had
been introduced some time earlier (G. W. Scott Blair, 1930s-40s).
The constitutive equation of a spring-pot is:

σ(t) = K 0Dα
t �(t) or �(t) =

1

K
0D−α

t σ(t)

3

Spring-pot model: Creep

A stress step σ0 is applied at initial time t = 0. The change of �(t) is
described by the FDE

0Dα
t �(t) =

σ0

K

An initial condition involving 0Dα−1
t �(t) is required. It can be found by

taking the first-order integral of the constitutive equation and letting
t→ 0

�
0Dα−1

t �(t)
�

t→0
=

�
0D−1

t (σ0/K)
�

t→0
.

In the considered case stress is finite at all times, therefore the re-
quired IC is

�
0Dα−1

t �(t)
�

t→0
= 0.

4

Spring-pot model: Impulse response

An impulse of stress defined as Bδ(t) applied to the spring-pot at time
t = 0. After that, the stress remains zero. The strain �(t) for t > 0 is
the solution of FDE

0Dα
t �(t) = 0.

An initial condition involving
�
0Dα−1

t �(t)
�

t→0
is required.

This can be found through integration of the constitutive equation,
as

�
0Dα−1

t �(t)
�

t→0
=

�
0D−1

t σ(t)/K
�

t→0
,

which gives the following initial condition:
�
0Dα−1

t �(t)
�

t→0
= B/K.

5

The key: look for inseparable twins

In a general case, when we consider some FDE for, say, U(t), we have
to consider also some function V (t), for which some dual relation
exists between U(t) and V (t). For example: stress σ(t) and strain
�(t) in viscoelasticity; charge q(t) and voltage v(t) in electrical circuits;
temperature difference T (t) and the heat flux q(t) in heat conduction;
etc. Functions U(t) and V (t) are normally related by some basic
physical law for the particular field of science.

In each scientific field there are such pairs of functions like the afore-
mentioned, which are as inseparable as Siamese twins: the left-hand
side of the initial condition involves one of them, whereas the evalu-
ation of the right-hand side is related to the other.
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