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Most used definitions of fractional differentiation
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Caputo, 1967:
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“Message in a Bottle” from lecture #2

All algorithms (GI, G2,R1,R2, LI1,L2, D) discussed
in lecture #2 can be written in the same form as

Decoding the “message in a bottle”

® Triangular strip matrices, operations with TSMs

® Uniform approach to discretization of derivatives and
integrals of arbitrary order

® Using TSMs for numerical solution of ordinary
fractional differential equations

® Using TSMs for numerical solution of partial fractional
differential equations

Triangular strip matrices (TSM)
Lower TSM:

wop 0 0 0 0
wy wo 0o 0 - 0
W L
Ly=1| - -
wN1l e wr ow wo O
Ll wv wn-1 e w2 wr wo |
Upper TSM:
Wy w1 w2 WN-1  WN
0 w wr o T wna
Uv=|0 0 w "~ w
000 0 . W ow
W Wy
Lo o 0o - 0o w |

If two TSMs are of the same type, then: CD = D C.

Truncation operation

00 N
o(z) = Zwkzk —  truncy (o(z)) & Zwkzk = on(2)
k=0 k=0

Function p(z) generates a sequence os lower TSMs:
Ly, N=1.2,...

or upper TSMs

Properties:
truncy (YA(z)) = 7 truncy (A(2))

truncy (A(2) 4+ p(2)) = truncy (A(2)) + truncy (p(z))
truncy (A(2)u(z)) = truncy(truncy (A(z)) truncy (u(z)))




Operations with TSMs

Ay =3 B = Mw(ED, By = S blE) = nlEr),
k=0

0
An(z) = truney (M(2)), gy = truncy (p(2))
Addition and subtraction:
Ay £ By «— truncy (A(2) £ p(z))
Multiplication by a constant:
vAy — truncy (YA(2))
Product of TSMs:
AyBy > truncy (A(2)p(2))
Matrix inversion:

(Ay)™" e truncy (A '(2))

Decoding the “message in a bottle”

® Triangular strip matrices, operations with TSMs

® Uniform approach to discretization of derivatives and
integrals of arbitrary order

® Using TSMs for numerical solution of ordinary
fractional differential equations

® Using TSMs for numerical solution of partial fractional
differential equations

Integer-order differentiation

Backward differences

Approximation of the first order derivative:

Vi) = (e i), k=1, N.

flte) = %

All these formulas can be written simultaneously:

ht fo 1 0 0 0 --- 0 fo
LtV f(t) -1 1 0 0 -~ 0 fi
h=t V f(ts) 1 0 -1 1 0 - 0 fa
R~V f(tn-1) o - 0 -1 1 0 v
KtV f(ty) 0 0 -~ 0 -1 1 fn

Integer-order differentiation

Backward differences

Approximation of the first order derivative:

1 0 0 0 0

-1 1 0 o0 0

11 0 -1 1 o0 0
B}\,fﬁ .

0 0 -1 1 o0

0 0 0 -1 1

Integer-order differentiation
Backward differences
Approximation of the second order derivative:

J0) % 3 VI0) = o (e~ 2fi1 + i), k=2, N

All these formulas can be written simultaneously, too:

h=2 fy 1 0 0 0 --- 0 fo
h=2(=2fo+ f1) -2 1 0 0 -~ 0 f
h=2 V2 f(ts) 1 1 -2 1 0 - 0 fo
: TR [ :

B2 V2 f(tn-1) o 01 =2 1 0 fna1
h=2V2f(ty) 0 0 -~ 1 -2 1 fn

Integer-order differentiation

Backward differences

Approximation of the second order derivative:

1 0 0 0 0
— 1 0 0 0
1 1 -2 1 0 0

Generating function:

Ba(z) =h721 =22+ 2%) = h72(1 — 2)?




Integer-order differentiation

Backward differences

Approximation of the p-th order derivative:

w 0 ... 0 0 0 0 0

wr owo 0 ... 0 0 0

we wp wo 0 ... 0 0 0

......... p . .
HT'—L 0 0 w]:(fly(]), j=0,1,2 ...,p
NTW L 0

0
0 ... 0 w wp1 ... wo O
0 0 oo 0 W Wyt ..o W

Generating function:
Bylz) = hP(1 -2

Integer-order differentiation

Backward differences

For the generating functions we have:

Ba(z) = Bi(2)Bi(z)
Bp(z) = Bi(z)...01(2)
P

Bpia(z) = Bp(2)B4(2) = Bqg(2)5p(2)

and therefore

BY = By By,
BY = BN\ B\...BL,
NN PN

p

B = BY By =By BY
13 14
Left-sided fractional derivatives Left-sided fractional derivatives
3 w00 0 e 0
o i VoI ) TEAW o v W w0 0 0
DRI~ ~— = h ;(71)1 (j),mf], k=0,1,...N. e :%) j?) W o .
N T 74
ha e e
Wi I
h=eve £ (t) W0 0 0 0 fo W W Wl el W
Ve f () G0W 0 0 0| | A
h=V e f(t2) 1 uéa) wga) wt()a) 0o - 0 f2 Bu(2) = h™o(1 — 2)
h=eve f(tn-1) R -1 B3By = BiBy = By,
h=*Vf(tn) uf\?) w(\oll w;“) wia) w(()a) N 7
" DECDIF®) = WDILDE () = DTS,
W = (71)1(7) j=0,1,...,N
' fWa)y=0, k=1,2 ... ,r—1,
r = max{n, m}
Integer-order integration Integer-order integration
Moving upper limit Moving upper limit
One-fold integral: ) Approximation of one-fold integration:
a(t) = [ foi 00 0 0
Approximation: ‘ L1000 . 0
bl 1 1 1 0 - 0
g(t)=h> fi,  k=1...,N. TN =h )
i=0 ..
All these formulas can be written simultaneously: 1 ) ! 1 i |
g1(t1) 1 0 0 0 -+ 0 fo
gi(t2) r 1 0 0-- 0 fi . .
o) | |1 1100 fo Generating function:
91(;5;\/) 1 1 10 f;\; 1 ©1 (Z) = h(l — 2)71
gi(tn +h) 11 - 1 1 1 I
17 18




Integer-order integration
Moving upper limit

Notice that matrix I}\, is inverse to the matrix B} :

BL Iy = I4 By «— truncy (61(2) p1(2)) =1 — E.

1 0 0 0 - 0 1 0 0 0 - 0
-1 1 0 0 - 0 1 1 0 0 - 0
0 -1 1 0 - 0 1 1 r 0 - 0 7
0o - 0 -1 1 0 1 .- 1 11 0
0 0 - 0 -1 1 1 1 - 11 1

Integer-order integration

Moving upper limit

Two-fold integral:

t t
go(t) = [t [ foyat
Approximation:
k-1 k—1 k-1 -1
gate) = hY_gi(t) =hY gi(t) =hI_hD_f
i=0 i=1 i=1  j=0
k—=1i-1 k=2 '
= B3 =0y (k-1
i=1 j=0 =0
= /12((k Do+ (k=2)fit.. +2fs+ fk—Q)
k=2.3,...,N.
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Integer-order integration
Moving upper limit

Approximation of the two-fold integration:

ga(t) = B((k=Dfo+(k=2fi+...+2f s+ fia), k=2,3,...,N.

All these formulas can be written simultaneously, too:

92(t2) 1 0 0 0 e 0 fo

2
92(t3) 2 10 0 - 0 f
_p2| o e T e
g2(tn) - 3 2 1 0 0 fae
92(tn +h) N - 32 1 0 fnoa
g2(tn + 2h) N+1 N . 3 21 I

Integer-order integration

Moving upper limit

Approximation of the two-fold integration:

1 0 0 0 - 0
2 1 0 0 - 0

12 = B2
N .. 3 2 1 0 o0
N .. 3 2 1 o0
N+l N - 3 2 1

Generating function:

p2(2) = h*(1 - 2)7°
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Integer-order integration
Moving upper limit

Notice that matrix I%; is inverse to the matrix B :

B% 1% = I4B% — truncy (Ba(2) 2(2)) = 1 — E.

1 0 0 0 0 1 0 0 0 0
-2 1 0 0 0 2 1 0 0 0
1 -2 1 0 0
......... . 3 2 1 0 0 .
-0 1 -2 1 0 N 3 2 1 0
o 0 - 1 -2 1 N+1 N - 3 2 1

Integer-order integration

Moving upper limit

t >
p-fold integration:  g,(t) = / drp / dTp—l---/f(Tl)dTl

Approximation:
0 0 0 - .- 0
" o 0 0 -0 .- 0
[Z]w =h e 72 Mmoo 0 e
IN-1 e o oM Y 0
AN OIN-1 ot P27 0

Generating function:

ep(2) = hP(1 = 2)7P

24




Integer-order integration

Moving upper limit

Notice that matrix I%; is inverse to the matrix B :

BRIX = I8 BY, «— truncy (Bp(2) pp(2)) =1+— E

Properties:

I = IyIy,
B = INIy... Iy,
N ——

p

B B =1

Matrices 1§, commute with matrices BY, .

Left-sided fractional integrals

D f0) = g [ = o<t <),

1% = (BY)™.

I — @n(z) = truncy (8,'(2)) = truncy (A*(1 — 2)7%).

w0 00 0
R S 0
(-a)  (-a)  (-a)
W w W 0 0
A B
w(\l"l) Wl W Wl
I I CU I CRI G

Decoding the “message in a bottle”

® Triangular strip matrices, operations with TSMs

® Uniform approach to discretization of derivatives and
integrals of arbitrary order

® Using TSMs for numerical solution of ordinary
fractional differential equations

® Using TSMs for numerical solution of partial fractional
differential equations

Useful matrices: Eliminators

Eliminator, S, ,, ., ,is obtained from the unit
matrix by omitting rows with numbers 71,72,...,7% .

How do they act:

an a;p as
010
A=|an axn ax |; 51—{001],
a3l az2 a3z

a2 a3

SIA:|:(121 az2 (123:|; AS;T|:(122 (123:|; S[AS;T:|:a22 (123}_

asy Gz ass az2 as ag2 33

Useful matrices: Eliminators

In general, Iy | wr_ [ Ly
s{ovjsr-{on )
) Ly T _ )] Lna
SN Un Sy = { Un_1 }
Ly Ln_p—
oo { o fsta={ 2 )

SNk, N—k+1,.,N L SK ke e .
Nk, N—k+1,....] Ux N—k,N—k+1,..,N Un—pa

Simultaneous multiplication of a triangular strip matrix by an
eliminator Sy 5 (or Sy_pN—t+1,.,N) on the left and its
transpose on the right preserves the type and the structure of
the triangular strip matrix, and only reduces its size by k+1 rows
and k+1 columns.

Initial value problems for FDEs

Discretization of an equation

Consider linear FDE with non-constant coefficients:

m
Zpk(t)D"ky(t):f(t)7 0<og <ap<...<ou, n—1<ay,<n
k=1

Denote pi(to) 0 0
0 . (T 0
P = di‘dg(Pk(to)qu(tl)y-»»«,P/e(tN)) =1, Pl —
0 0 pr(ty)

T T
Yo = (ulto)y(t)oooytn)) s F = (Flto) S, fltw)) -

Then the discrete form of the equation is simply:

S PYBYYy = Fy
k=1




Initial value problems for FDEs

Handling zero initial conditions

Ifn—1<am<n and y® () =0, k=0,1,...,n—1,

then the Riemann-Liouville and Caputo derivatives coincide.

Approximating derivatives in the above conditions by
backward differences we immediately have:

y(to) = y(t1) = ... = y(tp—1) = 0.

and the system for finding the rest is:

{50,1,-4-,n—1 {Z Pz(\;e)BJO\ZJk} S(>T,1,...,n_1} {S01,.n-1YN} = So.1,..n-1FN-

k=1
For constant coefficients it is even simpler:

m
> kB, {801, n-1YN} = So,...n-1FN.
k=1

Matrix approach — toolbox for MATLAB
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Matrix approach to discretization of
ODEs and PDEs of arbitrary real
order

(820 En - £ 8 R Juem = fam by Igor Podlubny
12 Nov 2008 (Updated 18 May 2009)

Functions illustrating matrix approach to discretization
of ODEs / PDEs with fractional derivatives.

Example |: Fractional relaxation equation

1 % step of discretization

h = 0.01;
t = 0:h:5; % as in [DOFDS-paper, caption to Fig.6] oD{'z(t) + Bx(t) =0, (0<a<1),
N = length(t) + 1; % number of nodes
B = 0.1; % coefficient of the equation z(0) =1,

% as in [DOFDS-paper, caption to Fig.6]
£= 0+ 0%t'; % RHS, as in [DOFDS-paper, caption to Fig.6]
M = zeros(N,N); % pre-allocate matrix M for the system

alpha=exp(-0.01*5); % beta = 0.9512, order of equation

% First, we make the matrix for the entire equation -- this is really easy:
M = ban(alpha, N-1, h) + B*eye(N-1,N-1);

% Then we compute the right-hand side at discretizatil
F =eval ([f '-B'], £)'; 0ss

B BN
% Utilize zero initial condition: [N
M = eliminator(N-1,[1])*M*eliminator(N-1, [1])'; = \\\\\
F = eliminator(N-1,[1])*F; & I
o35 g
% And solve the system MY=F:
Y = M\F; N \\\\\\\
o8 T

% Pre-pend the zero initial value (that one due to zq
Y0 = [0; Y); 0ss

% Plot the solution: 1 2 3
plot(t, Y0+1, 'g')

Example 2: Caputo derivatives

Zero initial conditions

The problem: 4@ +y() =1, Exact solution is:

y(t) = 1 Ba,ar1(—1%)

m
From ZpkB?V’in {So,1,.n—1YNn} = So1,..n—1Fn-

k=1
m=2 o =a a=0n=2p =p =1,
By, =B%_ 5, BY.,=En_2, Fy=(1,1,..., nT
N

the system for determining y;, k=2,3,...,N is:

{B{_o+ En—2} {So1Yn} = So1Fn

...and don’t forget to add yo =y1 = 0.

Example 2: Caputo derivatives

Zero initial conditions

Solution of the problem y(18)(t) 4+ y(t) = 1,5(0) = 0,4'(0) =0

analytical solution
+  numerical solution (h=0.01

05 1 15 B 25 3 35 @ a5 5

Example 3: Caputo derivatives

Non-zero initial conditions: transform them to zeros.
The problem: @ () +y(t) =1,
y(0) =co, ¥'(0)=c1
Exact solution is: y(t) = cBa1(—t%) + c1tEas(—t%) + t*Eoas1(—1%)

Introduce an auxiliary function:
y(t) = co + crt + z(t)

Then the problem for z(7) is:

AV +2(t) = 1- o — et ibounded Ris!




Example 3: Caputo derivatives

Non-zero initial conditions: transform them to zeros.

Solution of the problem y(1®)(¢) 4+ y(t) = 1,5(0) = 1,/ (0) = —1

analytical solution
18 . . *  numerical solution (h=0.01) ||

Example 4: Riemann-Liouville derivatives
Non-zero initial conditions: transform them to zeros.

The problem: YO +y(t) =1,
Y@ V0) = co, ¥y @I(0) = ¢y
Exact solution is:
y(t) = cot®  Ega(—t%) + c1t* 2 Eg a1 (—t%) + t* Eq a1 (—t%)
Introduce an auxiliary function:

y(t) = cot® !+ ert®72 4 2(t)

Then the problem for z(7) is:

Z(“) (t) + Z(t) =1 Cota_l _ clt“_z ‘unbounded RHSE

z(0) =0, Z'(0)=0.

Example 4: Riemann-Liouville derivatives
Non-zero initial conditions: transform them to zeros.

Solution of the problem y(¥) () +y(t) = 1;50®(0) = 1,502 (0) = -1

analytical solution g
+  numerical solution (h=0.01

~o 05 1 15 2 25 3 35 4 a5 5

Motion of an immersed plate

Bagley-Torvik equation:

Ay (1) + BoDPy(t) + Cy(t) = (1) (£ >0),

A=M, B=2Sup, C=K,

Newtonian
fluid

add initial conditions!

£

40

Example 5: Bagley-Torvik equation

8,(0<r<1)

i 30)=¥(0) =0

A0 +8770) + 0 = F0), )= {

% (1) Prepare constants and nodes (this is the longest part of the script):
alpha = 1.5;

A=1; B=1; C = % coefficients of the Bagley-Torvik equation

h = 0.075 % step of discretization

T = 0:h:30, % nodes

N = 30/h + 1; $ number of nodes

M = zeros (N,N); % pre-allocate matrix M for the system

% (2) Make the matrix for the entire equation -- this is really easy:

M = A*ban(2,N,h) + B*ban{alpha,N,h) + C*eye(N,N);

% (3) Make right-hand side:

F = Bx(T¢=1)'; N\

% (4) Utilize zero initial conditions: [
M = eliminator(N, [1 2])*M*eliminator(N, [1 2])';
F = eliminator (N, [1 2])*F; |

% (5) Solve the system MY=F:
Y = M\F;

% (6) Pre-pend the zero values (those due to zero
Y0 = [0; 0; Y1;

% Plot the solution: b 3 o L £ *

plot(T,¥0)

Nonlinear FDEs? Not a problem

Y (t) = f(t, y D),y @), ..y (1)),
O<ar<az<...<ap<n.)

Suppose initial conditions are already transformed to
zero initial conditions. Then replacement of
derivatives with their discrete analogues gives:

BN'Yn = f(Etn, B¥YN, By Yn, ..., ByfYn),

Y =0, j=1,2...,n—1,

This is a nonlinear algebraic system.




Nonlinear FDEs? Not a problem

Diethelm K.,Weilbeer M.: A numerical approach for Joulin’s model
of appoint source initiated flame.
Fractional Calculus and Applied Analysis, (7):2, 191-212,2004

{
3
‘-——-—-—‘-d

The nonlinear algebraic system is solved by Newton’s method

R ERsem——

Decoding the “message in a bottle”

® Triangular strip matrices, operations with TSMs

® Uniform approach to discretization of derivatives and
integrals of arbitrary order

® Using TSMs for numerical solution of ordinary
fractional differential equations

® Using TSMs for numerical solution of partial fractional
differential equations

44

Kronecker matrix product

apy aig ... Ay by big .. by

Qa1 Q22 ... A2m boy bay ... qu
A= , B=

Un1 Qp2 - Qnm bp1 bpa .. bpg

Kronecker matrix product:

a1 B a;sB ... a1, B

a1 B axB ... ay, B
Ao B— 2.1 2? 2

amB apB ... apnB

45

Kronecker matrix product

Example:
12 123
A= , B=
0—3} [456}
123 2 4 6
456/ 8 10 12
A®B=

000/ -3 -6 -9
000/ ~12 —15 —18

46

Kronecker matrix product

Important properties:

e if A and B are band matrices, then A ® B is also a band matrix,

e if A and B are lower (upper) triangular, then A ® B is also lower (upper)
triangular.

47

Kronecker matrix product

Kronecker products with identity matrices: example:

Qp1 Qg2 Qg3
A=
Q21 G2z Qg3
a;; 00 a2 0 0 ag 0 O
a;; e a3 0 0 0 0 ay; 0 0 ae 0 0 ag 0O

azr agz azs 0 0 0
B A= A®Ey =

0 0 0 ag ase azg

0 0 a;y 0 0 az 0 0 ap
ag; 0 0 aze 0 0 agy 0 0

0 0 0 as as as 0 ay 0 0 a 0 0 ay O

0 0 ay; 0 0 aze 0 0 agy

48




Discretization schemes

Fractional orders:
U [ ||

Integer orders:

| Y U
T S t 3 ot T 7] B 922
i 52U
z? oDFU
R R
82U GﬁU
T-—o—:—o—— 02 T 0lx|?
| ou oDSU
¢
h g h

49

Symmetric
Riesz fractional derivative

d’¢(x)
d|x|

= Do) = 5 (Do) + +DJ ()
x /7

Riemann-Liouville

RIESZ POTENTIAL OPERATORS AND INVERSES VIA
FRACTIONAL CENTRED DERIVATIVES

MANUEL DUARTE ORTIGUEIRA

Received 2 January 2006; Revised 4 May 2006; Accepted 7 May 2006
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Discretization of symmetric
Riesz fractional derivative

[U(m e

m m—1 -

vgm U(()ﬁ)]T:ng) [vm Um—1 ... U1 Uo]T

(1) Using the left and right sided R-L derivatives:
R = h [—1Um + +1Um]

(2) Using Ortigueira’s centred differences:

o (=1)FT(B + 1) cos(Br/2)
k T(B/2-k+1)T(3/2+k+1)

Discretization net

m m-1m-2m-3 5 4 3 2 1 0

Nodes and their right-to-left, and bottom-to-top numbering.

Discretization using TSMs

o°U
" N Ozl
\ OD?U
BY® E,, E,®Rp,

Discretization using TSMs

U
oDZU

h

9PU
OD?U - (12

{B3 ® Ep — 0 By @ R fum = fom




100 OD U - = F
t 22
Structure of the
system matrix
< 350 m
[o) [ s45
oz 300

325 330 3% 340 345 950 355 360
n2= 27550

Did Romans knew
about TSMs?

Sierpinski gasket:
found in ancient
Roman houses
in Merida,
(around 0A.D))

e

...and emulated
using HTML+CSS
on my web page...

Igor Podlubr
TV —r— Sia
Rectiinear

Bauhaus.
LT = BlackSquare  Black cirle

Slerpinski Carpet

Using CSS only, | emiled te 4 sepof 3
There

e o praphis clement n my emultion.
You can check his by looking 5t

The HTML code is self-similar!

W.E. Milne, Numerical Solution of
Differential Equations, Wiley, NY,1953
(the table below is from the Russian translation, 1955)

Test example
Ui = a*Usa
U®0,t) =0, U(L.t)=0 —_
U(,0) = 4x(L — z)/L2 ‘

Tabanua %

0,78673

|
0 0,47731
0 i . 0.46951
0 147053 | 0,33508 | 0,46184

(o,nsss)‘(n‘&am; (0,46189) | (0,54250) | (1,57060)

0.3484 0.6269 08267 09467 0.9867
03380 0.6141 08135 09334 09733
0.3287 0.6017 0.8003 09201 0.9600
0.3203 0.5897 0.7873 0.9068 0.9467

0.1843 03504 04817 05659 05948
0.1813 0.3447 04740 0.5568 0.5853
0.1784 03391 04664 05479 0.5760

Extending the test example to fractional orders:

U(0,t) =0, U(L,t)=0
U(x,0) = da(L — x)/L?

Conclusions

® Uniform approach to differentiation and integration of
arbitrary (integer and non-integer) order.

® This approach is easy, algorithmic, modular.
® Allows solution of nonlinear problems.

® Allows solution of partial fractional differential
equations with several fractional-order derivatives.

® Allows consideration and solution of fractional
differential equations with delays.

® TSMs are a particular case of the Toeplitz matrices —
theory and tools exist.
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