The fact that time measurement as a process of counting
of repeating discrete events does not really exclude inhomo-
geneity of time, has been nicely mentioned by L. Carroll in
Alice’s Adventures in Wonderland:

“...Tknow I have to beat time when [ learn mu-

sic.”

“Ah! That accounts for it,” said the Hatter. “He
[Time] won't stand beating. Now, if you only kept
on good terms with him, he’d do almost anything
you liked to do with the clock...”

XXXVII SUMMER SCHOOL ON MATHEMATICAL PHYSICS, RAVELLO, ITALY, SEPTEMBER 17 -29,2012

#4

Matrix approach extended:
distributed orders,
non-equidistant grids,
method of “large steps”

Igor Podlubny
Technical University of Kosice, Slovakia

http://www.tuke.sk/podlubny

Recall from lecture #2

Triangular strip matrices (TSM)
Lower TSM:
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If two TSMs are of the same type, then: CD = D C.

Left-sided fractional derivatives
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Left-sided fractional integrals:
inverse of fractional derivatives
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What will change if we
consider right-sided
fractional-order
derivatives and
integrals ?

Symmetric
Riesz fractional derivative
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Discretization of symmetric
Riesz fractional derivative
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(1) Using the left and right sided R-L derivatives:
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(2) Using Ortigueira’s centred differences:
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Time- and Space- Fractional
Diffusion Equation
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Symmetric Riesz fractional derivative:
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Time- and Space- Fractional Diffusion Equation

Cryo —
usion equation oDy —

B2 = ransyn (beta,m, h);
SD = kron(eye(n-1), B2);

S = eliminator (m, [1 m});
SK = kron (eye (n-1), §);
SystemMatrix without_ro

¥s = reshape (Y,m-2,n-1);
¥S = fliplr(¥s);
U - vs;

Example: Time-space fractional diffusion equation
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y(0,8) =0, y(1,t)=0; y(z,0)=0.
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Example: Time-space fractional diffusion equation
with delayed fractional derivative
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Historically the first example
of numerical solution of
fractional differential equations
with delayed fractional
derivatives

Systems of linear fractional ODEs? — YES!

B = (0.9 0.8 0.8]";
(@) 1y —

A = [-2.0000 -1.0000 -1.9000; ... X1 (1) = anxi +axe +aizxs +ci
-3.0000 -2.0000 -1.0000; ... By —

~1.0000 -1.0000 -1.0000]; Xy (1) = ax) +anx; +asx;+c

(1) = azixi +asxr +azsxs +c3

c=11521";

x1(0) =x2(0) = x3(0) =0.

timestep = 0.01; Steps = 2000;

Y = linsfdes (B, A, C, timestep, Steps);

plot3(Y(:,1), Y(:,2), Y(:,3))

Inside the function linsfdes.m:

for p = 1:k
D (((p=1)*N+1) : (p*N), ((p=1) *N+1) : (p*N)) .
= ban(B(p),N,h);

end

AK = kron(A,eye(N));

Matrix approach
and “short memory”

h*(lV(Yf(tO)
hve ()
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memory length

DO-fractional derivatives

d
JDF f (1) = / o(0) oD f(t)da

Left-sided
d

Right-sided DY f(t) = / p(a) D f(t)da
d

Symmetric aRf(a)f(t)I/ p(a) o By f(t)da

d
Restriction: / pla)da =1
c

Interpretation of DO operators

p(a)

Discretization of DO-FDs:

a piece of cake!




Discretization of DO-FDs:
a piece of cake!
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Example 0: DO-Diethelm-Ford equation(s)

Journal of Computational and Applied e el
omputatonal Example 5.1 The equation
T 216
. )
LO=1) prypyar = L= (26)
120

Numerical analysis for distributed-order differntial equat ' 5
Numercalanalysiafo disrbuted-order diferenial eavations | i1y initial conditions u(0) = /(0) = 0 has the unique solution u(t) = t°.
h=o. % step of discretization
t = 0:h:0.5; N mmercarsonmon
N = length(t) + 1; & number of nodes et
f= t."5-t."3)./log(t)"; % RHS, as in DF-paper, example 1 Lt
1 = zeros(N,N “allocate matrix M f yste
M = doban( 207, [0 21, 0.01, §-1, h); oz /
% Then we compute the right-hand side at discretization nodes: o
F = eval (f, t)';
% Utilize zero initial condition: L
M = eliminator(N-1,[1 2])*M*eliminator(N-1, (1 2])';
F = eliminator(N-1,[1 2])*F; i
% And solve the system MY=F:
¥ = M\F;

pend the zero initial value m oz ) o s
% (that one due to zero initial condition)
Y0 = [0; 0; Y.
% Plot the numerical solution:
plot(t, Y0, 'k') Error at u(0.5) = -7.6896e-04

Example |: DO-fractional relaxation equation

oD (t) + Ba(t) = f(t),
z(0) =1 =

z(t) =u(t) +1

oD u(t) + Bu(t) = f(t) — B,
u(t) = 0.

0+ 0%t';

£ RHS, as in [DOFDS-paper, caption to Fig.6]
M = zeros(N,N);

pre-allocate matrix M for the system

0.01; % step of discretization
0:h:5; % as in [DOFDS-paper, caption to Fig.6] oDfz(t) + Bx(t) =0, (0<a<l1),
length(t) + 1; % number of nodes
0.1; % coefficient of the equation 2(0) =1,
% as in [DOFDS-paper, caption to Fig.6]
k]

alpha=exp(-0.01%5); % beta = 0.9512, order of equation

% First, we make the matrix for the entire equation -- this is really easy:
M = ban(alpha, N-1, h) + Breye(N-1,N-1);

% Then we compute the right-hand side at discretizatif 1

F=eval ([f -B'], t)'; 0se

Utilize zero initial condition:
= eliminator(N-1,[1])*M*eliminator(N-1, [1])';

= eliminator(N-1,[1])*F; o \\\\\\

/

% And solve the system MY=F: o \
Y = M\F;
oss \
% Pre-pend the zero initial value (that one due to zel s
Y0 = [0; Y]; oss
% Plot the solution: i B 3 0

plot(t, Y0+1, 'g')

Example |: DO-fractional relaxation equation

h = 0.01; % step of discretization
t = 0:h:5; % as in [DOFDS-paper, caption to Fig.6]
N = length(t) + 1; % number of nodes
B = 0.1; % coefficient of the equation
% as in [DOFDS-paper, caption to Fig.6]
£= 00 + 0%t'; % RHS, as in [DOFDS-paper, caption to Fig.6]
M = zeros(N,N); % pre-allocate matrix M for the system
% First, we make the matrix for the entire equation -- this is really easy

doban('6*alf.*(1-alf)', [0 1], 0.01, N-1, h) + Breye(N-1,N-1);

% Then we compute the right-hand side at discretization nodes:
F = eval ([f '-B'], t)';

Utilize zero initial condition:
= eliminator(N-1,[1])*M*eliminator(N-1, [1])'; ~. i
= eliminator(N-1,[1])*F; ~

= e

And solve the system MY=F: o, . —
= M\F;

"

Pre-pend the zero initial value
(that one due to zero initial condition)
Y0 = [0; Y];

% Plot the solution:
U= Y0+ 1;
plot(t, U, 'k')

Example 2: Bagley-Torvik equation

% (1) Prepare constants and nodes (this

script) p . y 5 8 (0<t<1)
alpha = 1.5; Ay"(t) + By®@D () + Cy(t) = F(t),  F(t) = { B
A=1; B=1; C=1; % coefficients of

h = 0.075; % step of discreti YO =) =0

T = 0:h:30; % nodes

N =30/h + 1; % number of nodes

M = zeros(N,N); % pre-allocate matrix M for the system

% (2) Make the matrix for the entire equation -- this is really easy:

M = A*ban(2,N,h) + Brdoban('6*alf.*(1-alf)’, [0 1], 0.01, N, h) + Creye

(N,N);

% (3) Make right-hand side:

F = 8%(1<=1)

% (4) Utilize zero initial conditions:
M = eliminator(N,[1 2])*M*eliminator(N, [1 2])'
eliminator(N,[1 2])*F; 2

vs Half-order

% (5) Solve the system MY=F: .
Y = M\F;

% (6) Pre-pend the zero values (those due
% to zero initial conditions)
Y0 = [0; 0; Y];

% Plot the solution:
plot(T,Y0)
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N
¢ Example #3-5: Bagley-Torvik equation

wr0+877 0+ = o), R0 = {051 3(0)=¥(0) =0

% (1) Prepare constants and nodes (this is the longest part of the script):
alpha = 1.5;

2
h
@
N
M

%
M

R

R

o

¥

%

Yo

%

=1 = 1; % coefficients of the Bagley-Torvik equation
= 0.075; % step of discretization
- 0:h:30; % nodes
- 30/h + 1; % nunber of nodes
- zeros (N,N); % pre-allocate matrix M for the system
(2) Make the matrix for the entire equation -- this is really easy:
- R*ban(2,N,h) + B*ban(alpha,N,h) + Creye(N,N);
(3) Make right-hand side:
= 8x(T<=1)"; N
[\
oL\
(4) Utilize zero initial conditions: [
- eliminator (N, [1 2])*M*eliminator(N, [1 2])'s o)
- eliminator(N, [1 2])*E; ’ ‘\
(5) Solve the system MY=F: '/‘ ‘( P
- M\E; \ /
. L —- O
(6) Pre-pend the zero values (those due to zero \
- [0; 0; YI; " \ o/
\ /
Plot the solution: e

plot(T,¥0)

Example 3: DO-diffusion-wave equation

B
cpela), oy
ODt Y 8|CC|ﬁ —f(i?,t)

y(0,t) =0, y(1,t)=0; y(z,0) = 0.

pla) =1

[ERENEE

DO  ¢(a)=da—2A)

¥ \/

CO oD}

Q: How would you implement L
Dirac’s delta function in MATLAB? MATLAB: '0 + 100%(alf>0.99)'

Example 3: DO-diffusion-wave equation

pla) =2(1-a)

Jeian e

ola) =2a

Matrix approach toolbox
for distributed orders
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Non-equidistant grids

Non-equidistant grid: discretization is
cumbersome even in simplest cases...




The Rland R2 algorithms

RI and R2 are based on approximation of integration.

In such a case, the grid can be non-uniform.

-1
Recall that Ig = (B%)

Change the viewpoint:

Left-sided fractional derivatives:
inverse of fractional integrals; then

By = (Iy) ™

Any approximation of fractional integration
after inversion gives an approximation for
fractional differentiation on the same grid!

The simplest approach:
approximation of a function under integration
by a piecewise constant function

By, = (Ix)™"

Coefficients of Iy

(ty = tj—1)* — (tp — ;)
a+1) ’
j=1,...k k=1,...N.

Iy ; =

For non-equidistant grids, the matrix is nota TSM .

Example I: fractional integrals of sin(x)

a=-0.1

a=-03

a=-05

a=-07
a=[-0.1-0.3-0.5—
with non-equidistant §

0 1 2
t

Example 2: fractional derivatives of sin(x)

1

0.5
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a=0.3

1 =05

a=07
@=[0.1,0.3,0.5,0.7],
with non-equidistant st

0 1 2

Example 3: two-term ordinary FDE

¥ +yt) =1,

y(0) =0, ¥'(0)=0.

Exact solution:
y(t) = taEu-,rLJrl(fta)'
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0 1 2 3

a = 1.8, number of discretization nodes N =500




Example 4(a): Bagley-Torvik equation
Ay'(t) + By (1) + Cy(t) = F (),

equidistant step
non-equidistant step

Example 4(b): Bagley-Torvik equation
Ay'(t) + By**(t) + Cy(t) = F(0),

ro={5 G370 wo-vo-o

equidistant step
non-equidistant step

4
Y, -
A =
0 \ S
\j//
2 7
\/
-4
0 5 10 15 20 25
t

A=1,B=05C=0.5.

Can we have variable step length?

As seen in MATLAB: ode23.m and ode45.m solvers

* optimized for a variable step

* using a variable step ensures that a large step size
is used for low frequencies and a small step size is
used for high frequencies

* make a step, estimate the error at this step, check
if the value is greater than or less than the
tolerance, and adapt the step size accordingly

There was nothing like this available for FDEs -
so far...

Method of “large steps”

Method of “large steps”

oDy(t) = fy(®),1), (¢ >0),
y(0) =0,
Suppose we obtained its solution in the interval (0,a)
(and the final value y, at f=a), then we can use this
for transforming the above problem to
aD?y(t) = f(y(t)7t) - Ong(t)v (t>a),
(@) = Ya,

where a

RE0) = g [P 4> ).
0

oRgy(t) = oDf (L= H(t - a)y(t))

First o
“large step” oDfy(t) = f(y(8),t), (¢>0),
(o2l y(0) =0,
«Diy(t) = f(y(t),t) — oRGy(t), (t > a),
y(a) = Ya,
Auxiliary function:
y(t) = ult) + o,

Second
“large step” aDfu(t) = f(u(t) + ya,t) — oRGY(t) — ya, (L > a),
in [2.b] u(a) = 0.




Method of “large steps”: example (1)

First “large step”:interval [0, 1]:

;liaz_Zﬁ Using the matrix approach 1:
t = 0:h:l;

N=1/h+1; '
M = zeros(N,I); "
M = ban(0.5, N, h) + eye(N,N); 12
F = (£.7(0.5)/gamma(1.5) + t)’; N
M = eliminator (N, [1])*Mreliminator (N, [11)’;

F = eliminator (N, [1])+F; o8
Y = M\F; o0
Yo = [0; YI; 04
plot (t,Y0,’b’) 02
set(gea, ’xlim’, [0 2], *ylim’, [0 2] )

grid on, hold on g [ ] TS

s b (> 0), Exact solution: y(t) =t.

Method of “large steps”: example (2)

Second “large step”:interval [1,2]

oD 2y(t) = 1D} y(t) +

1
1 [ y(n)dr
F(U.S)O/ (t—m)/2’ >1)

1
1/2 _| [ | 1 / dr
1D Py(t) + y(t) ) +1t 05 / =y (t>1).

N ~ 05 9405 2(t—1)”7‘_
DI+ = g+ i e ¢ )
y(1) =1.

y(t) = u(t) + 1,

Method of “large steps”: example (3)

The problem to solve in [1, 2]:

t/D.E Qf,‘”’ 2(1‘ o 1)1].5

Ditu(t) +u(t) = +t — 1 (t>1

1Diu(t) +u(t) I(1.5) £0.5)  T(0.5) >
u(l) =0.

clear all Using the matrix approach :

h =0.01; 18

t = 1:h:2; 18

N=1/h+ 1;

M = zeros(W,I); "

M = ban(0.5, N, h) + eye(N,N); 2

F = (£.7(0.5)/ganna(1.5) + t - 2+6.7(0.5)/ganna(0.5) ... s

+ 2(5-1).~(0.5)/gamna(0.5) - 1)7; e

¥ = eliminator (N, (1)) *irelininator (N, [11)'; . e

F = elininator(N, [1])+F; o =

U =M\F; .

w0 = [0; Ul; 0 /

YO = U0 + 1; e

plot(t, Y0, ’g’) g os T i

Method of “large steps” and
the problem of initialization

Lorenzo and Hartley raised the question about initialization of
fractional derivatives. Their motivation was to use or recover
the information about the process y(f) in the interval (0, a),
if we consider fractional derivatives of y(f) in (a, «).

NOTE: in the second “large step” in the considered sample
problem we used, in fact, the proper initialization of the
fractional derivative in the interval (1, 2) based on the known
behavior of y(¢) in (0, 1).
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