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will produce a current 

U0 
hit" 

i( t)  = - O < n < l ,  t > O  (1) 

hl is a constant related t o  the capacitance of the capac- 
itor and the kind of dielectric. n is another constant, n 
close to  1.0 for capacitor dielectrics, and is related to  the 
losses of the capacitor. The  lower the losses, the closer 
to  1.0 is n. This will be verified later in this Section, see 
also Appendix A. 
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Figure 1. 

Current vs. time. At t = 0 a voltage of 100 V is 
connected to  a 0.47 pF capacitor with metalized 
paper dielectric. 

In this context it should be noticed that losses and 
dissipation are not always the same thing. Dissipation 
means generation of heat. By losses we imply energy 
lost from the process under study and not necessarily 
in the form of heat. Equation (1) implies that if log(i) 
is plotted vs. log(t), a straight line with slope -n will 
result. Figure 1 shows an example of an experimental 
curve with average slope -0.86. 

For many years we have almost daily verified Equa- 
tion (1) and altogether we have measured tens of thou- 
sands of capacitors of all types and makes and have never 
experienced a capacitor that  does not closely adhere to  
Equation (1). We therefore consider Equation (1) t o  dis- 
play a normal property of all dielectrics and insulators. 
This is controversial! For instance von Schweidler [2,3] 
was of the opinion that  the Curie current is abnormal 
and named it  accordingly. Many modern workers assent 
to  the ideas of von Schweidler, for instance [4]. But there 
are also a few who disagree, maybe foremost Jonscher, 
who in 1977 named the Curie response 'the universal di- 
electric response' [5]. 

proportional t o  the voltage. This means that Laplace 
transforms can be used. 

By means of a table of Laplace transforms we find I(s), 
the Laplace transform of the current excited by a voltage 
step, by straightforward transformation of Equation (1) 

r( 1 - .)U0 
I(s) = his1-" O < n < l  (2) 

s is the Laplace parameter, also called complex frequen- 
cy, U0 is the step magnitude, h l  and n are capacitor 
parameters and T( 1 - n) is the gamma function with ar- 
gument 1 - n [6]. For the n-values valid for capacitors, 
Appendix A, the following approximation to  the gamma 
function is useful 

n M 1  (3) 

The transfer function H ( s )  of 'the model capacitor is 
identical to  the transform of its unit impulse response. It 
is obtained from Equation (2) by putting the amplitude 
Vo = 1 (unit) and multiplying the right member by s 
(impulse) 

O < n < l  (4) 

H ( s ) ,  the transfer function, is the ratio of the output 
current, I(s), and the input voltage, V ( s ) ,  and 

T(i - n)  cg = - 
hl 

O < n < 1  (5) 

is a model constant that  is close to  what we usually define 
as capacitance. 

By replacing s with i w  in Equation (4) we can study 
the frequency response of the capacitor. Most interesting 
is the phase difference $ between the current and the 
voltage a t  frequency w .  When n = 1, $ = x / 2  ( U  lags 
I) and therefore losses are preferably expressed by tan6 
where 6 is the angle by which $ deviates from a/2, that  
is 6 = x / 2  - $. By means of Equation (4) we determine 
the real and imaginary parts of the current 

I (  i w )  = CO( iw)"U(  i w )  

= Clawnu( i w )  exp[ i xn/2] 

= COwnU( iw)(cos - + i sin -) 

= CO i w"V( i w )  sin -( 1 - i tan6) 

x n  xn 

xn 
2 

2 2 (6) 

O < n < l  

There is much more t o  say about Equation (1) but 
we will postpone this until we can explore the capacitor 
model that  it gives rise to. At present we will just point 
out that  the Curie model is linear, i.e. the current is 

c0 is given by Equation (51, I (  i w >  and U (  are rms 
amplitudes and 

x (  1 - n )  
2 tan6 = tan - O < n < l  (7) 
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A B S T R A C T  
A new linear capacitor model is proposed. It is based on Curie's 
empirical law of 1889 which states that the current through a 
capacitor is i( t)  = U o / ( h l t " ) ,  where hl and n are constants, U0 
is the dc voltage applied at t = 0, and 0 < n < 1. It implies 
that the insulation resistance is R,(t) = hit", that is, it increas- 
es almost in proportion to time since n nearly equals 1.0. For a 
general input voltage u( t )  the current is i ( t )  = Cd"u(t)/dt" where 
use is made of the fractional derivative, defined by means of its 
Laplace transform. The model gives rise to a capacitor imped- 
ance Z( i w )  = l/[( i w ) " C ] ,  with a loss tangent that is independent 
of frequency. The model has other properties: the capacitor 
'remembers' voltages it has been subjected to earlier, dielectric 
absorption is an example of this. Capacitor problems require 
solving integral equations. The model is dynamic, i.e. electro- 
static processes are simply slow dynamic processes. The model 
is applied to several problems that cannot be treated with con- 
ventional theory. 

1. I N T R O D U C T I O N  
HE theory of capacitors and dielectrics is a difficult T subject since, as i t  appears, almost every proper- 

ty that a dielectric possesses does require its own the- 
ory. In addition, the field of dielectrics is distinguished 
by the infrequency with which new ideas and concepts 
have emerged. Thus, most of the theory emanates from 
the last century and the first few decades of the present 
century. Industry and universities devote their efforts 
to  quite different assignments, both on the experimental 
and the theoretical side, and research a t  universities and 
industrial applications have little or nothing to  do with 
each other. 

The object of this report is to  introduce a theory of 
dielectrics, that  we have used for many years, and with 
which we have penetrated problems that derive from elec- 
trical applications in industry. I t  is an engineering type 
of theory that  does not in any way 'explain' the nature 
of the internal processes of the dielectric, but can repro- 
duce and predict its behavior much better than any other 
theory that we know of. 

2. BASIC M O D E L  
The starting point in developing a new capacitor mod- 

el is Curie s law of 1889 [l]. This is a purely empiric 
relation. A constant dc voltage U0 applied a t  time t = 0 
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The contemporary art(?) 
of data fitting

1.  Collect your experimental data

2.  Which shape do they remind you?
(How many functions do you know?
 How many combinations of those can you imagine?)

3.  Use you fit in some way.
  (How can you use your fit?

 Interpolation, extrapolation – but other uses?)

“How many functions... ?”
• Linear interpolation – 

Babylonian astronomers,  around 4th century BC

• Quadratic interpolation – 
Liu Zhuo, China, around 544–610

• Trigonometrical interpolation – 
Hipparchus of Rhodes, around c. 190 – 120 BC, 
Ptolemy of Alexandria, around 87–170 AD

• Approximation by circles and ellipses – 
Kepler, 1609–1619

• Approximation of growth and decay 
using exponential function – 
physics, chemistry, biology of last couple of centuries

In fact, data fitting is done with the help 
of solutions of differential equations

y = kx+ b y�� = 0

y = a sin(wx) + b cos(wx) y�� + w2y = 0

y = Cekx y� − ky = 0

y = Aekx sin(wx) +Bekx cos(wx) a2y
�� + a1y

� + a0y = 0

Instead of postulating the type of the fitting function,  we can postulate 
the type of the differential equation; its coefficients must be determined.

Ay�� +By� + Cy = 0



G. M. Mittag-Leffler

Professor Donald E. Knuth, 
creator of TEX: 

“As far as the spacing in mathematics 
is concerned...
I took Acta Mathematica, from 1910 
approximately; this was a journal in 
Sweden ... Mittag-Leffler was the 
editor, and his wife was very rich, and 
they had the highest budget for making 
quality mathematics printing. So the 
typography was especially good in 
Acta Mathematica.”

(Questions and Answers with Prof. Donald E. Knuth, 
Charles University, Prague, March 1996)

Sur la reprdseutatiou analytique d'uae branche uniforme d'une fonction monogSne. 45 

nulle part elle-mdme, renferinant le point it, et tel que 1~ branche de 1~ 
fonction F(x),  formde par ~3(xta ) et sa continuation analytique h l'intdrieur 
de K, reste uniforme et rdguliSre, nous ddsignerons cette branche par Fit'(w). 

Le probl~me dont nous allons nous occuper sera de trouver une reprd- 
sentation analytique d'une branche 1,'K(x) choisie aussi dtendue que possible. 

De la d~finition mdme de la fonction analytique E(x),  et de celle 
de la branche FK(x),  r~sulte immddiatement une sorte de reprSsentation 
analytique de la branehe FK(x)  en question. 

En effet, pour obtenir une reprdsentation de cette branche, i[ suffit 
d'effectuer un hombre d~nombrable de prolongements analytiques de ~(x[a), 
par exemple 

= o ,  , ,  2 ,  . . . .  ; a o = a ; ~ 0 ( x J a )  = 

Les sdries ~3.(xla,~ ) sont formdes au .moyen des ~ldments 

(dZFK(~)) ; ,.,=o, 1, 2,....t (/~=0,1, ~, ...~ 

et ces dl&ments eux-mdmes 2euvent dtre calculds au moyen des ~ldments 
primitifs 

//'('*)(a) ; (# == o ,  , ,  2 , . . . ;  F(~ = F(a)). 

Mais, pour op~rer ce calcul, il faut connaitre le r ayon  du cercle de con- 
vergence de chaque s~rie ~.(xla.) , car il est impossible d'effectuer la 
continuation immddiate d'une telle sdrie sans ell connaltre le rayon de 
convergence. Nous avons d~jk cit& le thBor~me "de CAucHY qui nous 
donne ce rayon de convergence exprim& par l'inverse de la limite sup& 
rieure des quantitds positives 

v l _ ~ \  a~,, J - o % l '  l ,  = o , ~  , ~ _ ,  . . . .  

Oil volt que cette mani~re de reprdsenter FK(x)  au moyen flex- 
pressions analytiques est d'une complication extrdme ct d'une transcen- 
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Mittag-Leffler function: definition

Eα,β(z) =
∞�

k=0

zk

Γ(αk + β)
, (α > 0, β > 0)

E1,1(z) = ez,

E2,1(z
2) = cosh(z), E2,2(z

2) =
sinh(z)

z
.

E1/2,1(z) = ez2

erfc(−z); erfc(z) =
2√
π

∞�

z

e−t2dt.

Mittag-Leffler function: evaluation
MATLAB Central −→ File Exchange
MLF(alpha, beta, Z, P)
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Riemann–Liouville, 1920s:
(Letnikov, 1870s)

Caputo, 1967:

Miller–Ross, 1990s
(Dzhrbashyan, 1960s)

Grünwald–Letnikov, 1860s
(Liouville, 1830s)

Most used definitions of  fractional differentiation
Fitting data using the Mittag-Leffler function

y = y0 Eα,1(a t
α) C

0D
α
t y(t)− k y(t) = 0, y(0) = y0

y�(t)− k y(t) = 0, y(0) = y0y = y0 e
kt

y = y0 t
β−1Eα,β(a t

α)

Fitting the experimental data with the M-L function
immediately gives the basic FDE describing the process.



Just supply your data... Just supply your data...

Original:

Noise:
y1 = 1 * x.^(beta-1) .* mlf(alfa, beta, -0.2*x.^alfa, 7) + (-.05 + .1*rand(size(x)));
y2 = 1 * x.^(beta-1) .* mlf(alfa, beta, -0.2*x.^alfa, 7) + (-.05 + .1*rand(size(x)));
y3 = 1 * x.^(beta-1) .* mlf(alfa, beta, -0.2*x.^alfa, 7) + (-.05 + .1*rand(size(x)));

Fitting: α = 1.4934, β = 0.9934 y0 = 1.0084 a = −0.1985

y = y0 t
β−1Eα,β(a t

α)

α = 1.5,

β = 1,

y0 = 1

a = −0.2

Fitting back the noised Mittag-Leffler function

Original:

Noise:

Fitting:

Fitting the complementary error function

y1 = exp(x).*erfc(sqrt(x))  + (-.02 + .04*rand(size(x)));
y2 = exp(x).*erfc(sqrt(x))  + (-.02 + .04*rand(size(x)));
y3 = exp(x).*erfc(sqrt(x))  + (-.02 + .04*rand(size(x)));

y = eterfc(
√
t)

α = 0.4503, β = 0.9861, y0 = 1.0525, a = −1.1045

eterfc(
√
t) = E1/2,1(−

√
t)

Original:

Noise:

Fitting:

Fitting the cosine function

y = cos(t)

y1 = cos(x)  + (-.1 + .2*rand(size(x)));
y2 = cos(x)  + (-.1 + .2*rand(size(x)));
y3 = cos(x)  + (-.1 + .2*rand(size(x)));

α = 2.0029, β = 0.9891, y0 = 0.9855, a = −0.9967

cos(t) = E2,1(−t2)

Original:

Noise:

Fitting:

Fitting the sine function

y = sin(t)

sin(t) = t E2,2(−t2)

y1 = sin(x)  + (-.2 + .4*rand(size(x)));
y2 = sin(x)  + (-.2 + .4*rand(size(x)));
y3 = sin(x)  + (-.2 + .4*rand(size(x)));

α = 2.0056, β = 1.9960, y0 = 0.9700, a = −0.9959



Original:

Noise:

Fitting:

Fitting damped oscillations

y = e−0.1 t cos(t)

y1 = exp(-0.1*x).*cos(x) + (-.05 + .1*rand(size(x)));
y2 = exp(-0.1*x).*cos(x) + (-.05 + .1*rand(size(x)));
y3 = exp(-0.1*x).*cos(x) + (-.05 + .1*rand(size(x)));

α = 1.8784, β = 0.9982, y0 = 0.9731, a = −1.0089

y(t) = y0Eα,β(at
α)

Fitting data using the Mittag-Leffler function
Example: Growth of the number of FC articles in Web of Science
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7 3 12

8 6 15

13 8 19

10 9 21

34 24 34
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78 30 79
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185 53 110
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225 66 123

270 57 124

275 58 127

433 70 131

485 76 134

558 61 134

256 53 136
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y = 5.5537x - 0.0114

Cumulative number of different WoS Subject areas

y(t) = 4.2072E0.1559, 2.6082(0.7987 t
0.1559)

y(t) = 6.1583 e0.1727t

Fitting data using the Mittag-Leffler function
Example: Growth of the number of FC articles in Web of Science

�
(y(tk)− yk)

2 = 1.0586 · 104
�

(y(tk)− yk)
2 = 9.0512 · 103

“In fact, ... , functions of Mittag-Leffler type enter as 
solutions of many problems dealt with fractional calculus 
so that they like to refer to the Mittag-Leffler 
function to as the 

       Queen function of Fractional Calculus, 

in contrast with its role of a Cinderella function played 
in the past.”

The Queen Function
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Abstract. We revisit the Mittag-Leffler functions of a real variable t,
with one, two and three order-parameters {α,β, γ}, as far as their
Laplace transform pairs and complete monotonicity properties are con-
cerned. These functions, subjected to the requirement to be completely
monotone for t > 0, are shown to be suitable models for non–Debye
relaxation phenomena in dielectrics including as particular cases
the classical models referred to as Cole–Cole, Davidson–Cole and
Havriliak–Negami. We show 3D plots of the relaxations functions and
of the corresponding spectral distributions, keeping fixed one of the
three order-parameters.

1 Introduction

It is well recognized that relaxation phenomena in dielectrics deviate more or less
strongly from the classical Debye law for which the Laplace transform pair for complex
susceptibility (s = −iω) and relaxation function (t ≥ 0) reads in an obvious notation,

ξ̃D(s) =
1

1 + s
÷ ξD(t) = e−t. (1.1)

Here, for the sake of simplicity, we have assumed the frequency ω and the time t nor-
malized with respect to a characteristic frequency ωD and a corresponding relaxation
time τD = 1/ωD.
In the literature a number of laws have been proposed to describe the non-Debye

(or anomalous) relaxation phenomena in dielectrics, of which the most relevant ones
are referred to Cole–Cole (C-C), Davidson–Cole (D-C) and Havriliak–Negami (H-N)
laws, see e.g., the classical books by Jonscher [13,14]. Several authors have inves-
tigated these laws from different points of view, including Karina Weron and her
associates, see e.g., [15,16,29,30], Hilfer [11,12] and Hanyga and Seredyńska [7].
In particular, Hilfer has surveyed the analytical expressions in the frequency and

time domain for the main non-Debye relaxation processes and has provided the

a e-mail: capelas@ime.unicamp.br
b e-mail: francesco.mainardi@unibo.it
c e-mail: vaz@ime.unicamp.br
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a b s t r a c t

In this paper, we propose the definition of Mittag–Leffler stability and introduce the fractional Lyapunov
direct method. Fractional comparison principle is introduced and the application of Riemann–Liouville
fractional order systems is extended by using Caputo fractional order systems. Two illustrative examples
are provided to illustrate the proposed stability notion.

Published by Elsevier Ltd

1. Introduction

In nonlinear systems, Lyapunov’s direct method (also called the
Lyapunov’s secondmethod) provides away to analyze the stability
of a system without explicitly solving the differential equations.
Themethod generalizes the idea, which shows the system is stable
if there exist some Lyapunov function candidates for the system.
The Lyapunov direct method is a sufficient condition to show the
stability of nonlinear systems, which means the system may still
be stable, even if one cannot find a Lyapunov function candidate to
conclude the system stability property.

As far as the motivation of this paper is concerned, we note
that many systems exhibit the fractional phenomena, such as
motions in complexmedia/environments, randomwalk of bacteria
in fractal substance and the chemotaxi behavior and food seeking
of microbes (Cohen, Golding, Ron, & Ben-Jacob, 2001), etc. These
phenomena are always related to the complexity and heredity of
systems due to the fractional properties of system components,

✩ This work was completed while Y. Li visited the Center for Self-Organizing
and Intelligent Systems (CSOIS), Utah State University from August 2007 to August
2008. Part of this paper was presented at the Third IFAC Workshop on Fractional
Derivative and Applications (FDA08), November 5-7, 2008, Ankara, Turkey. This
paper was recommended for publication in revised form by Associate Editor Wei
Kang under the direction of Editor André L. Tits.∗ Corresponding author. Tel.: +1 435 797 0148; fax: +1 435 797 3054.

E-mail addresses: yqchen@ieee.org, yqchen@ece.usu.edu (Y. Chen).
URL: http://fractionalcalculus.googlepages.com/ (Y. Chen).

such as the fractional viscoelastic material, the fractional circuit
element and the fractal structure, etc (Bagley & Torvik, 1983a,b).
In particular, the memristor (a contraction for memory resistor),
which is said to be themissing circuit element (Chua, 1971), shows
somehereditary properties. Allowing for the fact that the fractional
calculus itself is a kind of convolution, the memristor is naturally
likely to be linked to fractional calculus. Finally, it is possible that,
in the future, there will be more fractional order dynamic systems
in micro/nano scales.

Recently, fractional calculus was introduced to the stability
analysis of nonlinear systems, for example Momani and Hadid
(2004), Zhang, Li, and Chen (2005), Chen (2006), Tarasov (2007),
Sabatier (2008) and Li, Chen, Podlubny, and Cao (2008), where
integer-order methods of stability analysis were extended to
fractional order dynamic systems. However, as pointed out in Chen
(2006), the decay of generalized energy of a dynamic system does
not have to be exponential for the system to be stable. The energy
decay actually can be of any rate, including power law decay.
For extending the application of fractional calculus in nonlinear
systems, we propose the Mittag–Leffler stability and the fractional
Lyapunov direct method with a view to enrich the knowledge of
both system theory and fractional calculus. Meanwhile, the fact
that computation becomes faster and memory becomes cheaper
makes the application of fractional calculus, in reality, possible and
affordable (Chen, 2006).

This work is motivated by the simple fact, as also indicated
in Chen (2006), that the generalized energy of a system does not
have to decay exponentially for the system to be stable in the sense
of Lyapunov.

0005-1098/$ – see front matter. Published by Elsevier Ltd
doi:10.1016/j.automatica.2009.04.003

Mittag-Leffler function:
a replacement for the exponential function

Ann. Inst. Statist. Math. 
Vol. 42, No. I, 157-161 (1990) 

ON MITTAG-LEFFLER FUNCTIONS AND 
RELATED DISTRIBUTIONS 

R. N. PILLAI 

Department of  Statistics, University of  Kerala, Trivandrum-695 581, India 

(Received August 29, 1988; revised February 27, 1989) 

Abstract. The distribution F~(x) = 1 - E~( - xa), 0 < a <_ 1; x _> O, where 
Ea(x) is the Mittag-Leffler function is studied here with respect to its 
Laplace transform. Its infinite divisibility and geometric infinite divisi- 
bility are proved, along with many other properties. Its relation with 
stable distribution is established. The Mittag-Leffier process is defined 
and some of its properties are deduced. 

Key words and  phrases: Completely monotone function, Laplace trans- 
form, infinite divisibility, geometric infinite divisibility, stable process. 

From CO to VO modelling
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Analogue Realizations of Fractional-Order Controllers
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Abstract. An approach to the design of analogue circuits, implementing fractional-order controllers, is presented.
The suggested approach is based on the use of continued fraction expansions; in the case of negative coefficients
in a continued fraction expansion, the use of negative impedance converters is proposed. Several possible methods
for obtaining suitable rational appromixations and continued fraction expansions are discussed. An example of
realization of a fractional-order Iλ controller is presented and illustrated by obtained measurements. The suggested
approach can be used for the control of very fast processes, where the use of digital controllers is difficult or
impossible.

Keywords: Fractional calculus, fractional differentiation, fractional integration, fractional-order controller, real-
ization.

1. Introduction

Although digital controllers are used more and more frequently for controlling many types of
complex processes, the role of analogue controllers should not be undervalued. Indeed, digital
controllers have some natural limitations, coming from their discrete nature, such as the length
of the sampling period and the time of computation, which should be significantly less than
the length of the sampling period. This sometimes makes the use of digital controllers prac-
tically impossible, especially in case of fast processes, such as vibrations, and the alternative
approach to controlling fast processes is represented by analogue controllers.

In this paper we describe an approach to the design of analogue fractional-order controllers.
The paper is organized as follows. First, we recall some basic relationships for describing

fractional-order systems and fractional-order controllers. Then we discuss some uses of con-
tinued fraction expansions, including their applications in the control theory. Finally, we show
how continued fraction expansions can be used for designing analogue circuits, implementing

! Partially supported by grant No. VEGA 1/7098/20 of the Slovak Grant Agency for Science.
!! Partially supported by FEDER Research Grant No. IFD97-0755-C02-01.

! ! ! Partially supported by a research grant of the Austrian Institute for Central and Eastern Europe.
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Fractor: Analogue device
Fractional Calculus Day at USU, April 19, 2005
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Abstract. Recent research results have shown that many complex phys-
ical phenomena can be better described using variable-order fractional
differential equations. To understand the physical meaning of variable-
order fractional calculus, and better know the application potentials of
variable-order fractional operators in physical processes, an experimen-
tal study of temperature-dependent variable-order fractional integrator
and differentiator is presented in this paper. The detailed introduction
of analogue realization of variable-order fractional operator, and the in-
fluence of temperature to the order of fractional operator are presented
in particular. Furthermore, the potential applications of variable-order
fractional operators in PIλ(t)Dµ(t) controller and dynamic-order frac-
tional systems are suggested.

1 Introduction

Many physical phenomena can be well described by integer-order differential
and integral mathematical models. For example, there is a definite mathematical
relationship between voltage and current for a capacitor as follows:

i(t) =
q(t)

dt
= C
dv(t)

dt
, (1)

where i(t) is the instantaneous current through the capacitor, C is the capacitance,
and dv(t)/dt is the instantaneous rate of voltage change. Some physical phenomena,
however, may be profitably analyzed by non-integer order differential models, such
as viscoelasticity and anomalous diffusion, which appear to exhibit long-memory
characteristics. The concept of fractional-order calculus, a generalization of integra-
tion and differentiation to non-integer orders, provides a useful tool to deal with
fractional-order dynamic systems or fractional-order controllers. Different from the

a e-mail: yangQuan.chen@usu.edu

Identification of  a  VO system
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Fig. 1. Numerical result of D0.08tt δ(t).
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Fig. 2. Schematic circuit diagram for a fractional-order integrator.

where K is the impedance magnitude at a calibration frequency ω0 = 1/τ , and λ is
a non-integer exponent. The phase shift is related to the exponent by φ = −90◦ × λ.
The analogue fractional-order integrator can be designed using the standard inte-

grator amplifier circuit. Figure 2 presents the schematic circuit diagram of fractional-
order integrator using an operational amplifier, in which the Fractor with impedance
ZF is connected as a feedback in the operational amplifier. The gain of the fractional-
order integrator in Fig. 2 is represented in the frequency domain as the ratio of the
feedback impedance to the input impedance:

G(ω) =
VOUT
VIN

= −ZF (ω)
ZR(ω)

= − K

R(jωτ)λ
, (15)

where R is the resistor. Rewriting (15) in the Laplace domain, s = jω, we get

G(s) = − K

R(sτ)λ
. (16)

Figure 3 illustrates the experiment setup for the analogue realization of fractional
integrator. The small cube at the bottom of the photo is the Fractor.
The frequency response for the fractional-order integrator with λ ≈ 0.9 is pre-

sented in Fig. 4. The frequency response was measured using HP 35665A Dynamic
Signal Analyzer which can be used to measure both magnitude and phase.

98 The European Physical Journal Special Topics

Fig. 3. Experiment realization for fractional order integrator.
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Fig. 4. Frequency response for the fractional-order integrator with λ ≈ 0.9.

Similar to the realization of fractional-order integrator, the fractional-order differ-
entiator can be achieved by exchanging the positions of Fractor and resistor. The Frac-
tor can be put to the input terminal of the operational amplifier as in Fig. 5. The gain
of the fractional-order differentiator can be represented in the frequency domain as

G(ω) =
VOUT
VIN

= −ZR(ω)
ZF (ω)

= −R(jωτ)
λ

K
. (17)

Rewriting (17) in the Laplace domain, s = jω, we get

G(s) = −R(sτ)
λ

K
. (18)

As a side remark, we can actually cascade another differentiator of first-order to
the output terminal of a fractional-order integrator to realize a fractional-order
differentiator.

Variable-order fractional differentiation 
and integration (VO-FD, VO-FI)

Hindawi Publishing Corporation
International Journal of Differential Equations
Volume 2010, Article ID 846107, 16 pages
doi:10.1155/2010/846107

Research Article
On the Selection and Meaning of Variable Order
Operators for Dynamic Modeling

Lynnette E. S. Ramirez and Carlos F. M. Coimbra

School of Engineering, University of California, P.O. Box 2039, Merced, CA 95344, USA

Correspondence should be addressed to Carlos F. M. Coimbra, ccoimbra@ucmerced.edu

Received 4 August 2009; Accepted 8 October 2009

Academic Editor: Nikolai Leonenko

Copyright q 2010 L. E. S. Ramirez and C. F. M. Coimbra. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

We review the application of differential operators of noninteger order to the modeling of dynamic
systems. We compare all the definitions of Variable Order (VO) operators recently proposed in
literature and select the VO operator that has the desirable property of continuous transition
between integer and non-integer order derivatives. We use the selected VO operator to connect the
meaning of functional order to the dynamic properties of a viscoelastic oscillator. We conclude that
the order of differentiation of a single VO operator that represents the dynamics of a viscoelastic
oscillator in stationary motion is a normalized phase shift. The normalization constant is found by
taking the difference between the order of the inertial term (2) and the order of the spring term
(0) and dividing this difference by the angular phase shift between acceleration and position in
radians (π), so that the normalization constant is simply 2/π .

1. Introduction

The integer order differential operators of classical calculus (such as the first or second order
derivatives) are familiar to anyone who has an active interest in understanding dynamic
systems. These differential operators are used to formulate models that accurately describe
the majority of physical phenomena and are ubiquitous in the mathematical description of
dynamic behavior. However effective these integer order differential operators are in general,
there are more complex systems that are better characterized by dynamic behavior that lies in
between the normal integer order description. A case in point is the so-called “viscoelastic”
behavior, which has characteristics of both elastic (order zero) and viscous (order one)
elements. It is thus natural to assume that differential operators of noninteger order, such
as a 0.25, 0.50, or 0.75 would provide a convenient mathematical description to analyze these
intermediate behaviors. The study of these noninteger differential operators falls under the
general subject of what became known as Fractional Calculus, though the orders studied are
not strictly limited to rational numbers.

International Journal of Differential Equations 3

definitions that satisfy this property, one is more efficient from the numerical standpoint,
and is therefore adopted in the remainder of this work. The appropriate operator then is used
to study the somewhat familiar problem of a harmonically forced oscillator with viscoelastic
damping. The goal of this second part of this work is to illustrate how a familiar problem in
dynamics can be used to understand the meaning of a VO operator, and to understand how
the dynamics in this familiar problem is affected by the physical parameters of the system
using a VO analysis.

The next section presents an overview of the various VO operator definitions and a
brief comparison of the VO operators applied to a harmonic and other bounded function.
Subsequent to selecting the operator, we propose a VO model for the harmonically forced
oscillator with viscoelastic damping of order p (0 < p < 1) and conduct a stationary analysis
that yields a very concrete meaning to the order of the operator.

2. Variable Order Operators

The VO operator definitions that have been proposed are either direct extensions of
the fractional calculus definitions or generalizations that arise from Laplace or Fourier
transformations. In the direct extension approach, the constant exponent in the fractional
operator is replaced with a function. For example, a VO integral is defined in [23] as

D−q(t)
c+ f(t) =

1
Γ
[
q(t)

]
∫ t

c
(t − σ)q(t)−1f(σ)dσ. (2.1)

When q(t) = α = constant, then the αth-order fractional integral is recovered. Other
definitions can be formulated by changing the form of the argument of the exponent to be
q = q(σ) or q = q(t − σ) and considering the Gamma function under the integral sign [24, 25]:

1D−q(t)
0 f(t) =

∫ t

0

(t − σ)q(t)−1

Γ
[
q(t)

] f(σ)dσ, (2.2)

2D−q(t)
0 f(t) =

∫ t

0

(t − σ)q(σ)−1

Γ
[
q(σ)

] f(σ)dσ, (2.3)

3D−q(t)
0 f(t) =

∫ t

0

(t − σ)q(t−σ)−1

Γ
[
q(t − σ)

] f(σ)dσ. (2.4)

In the cases above, the lower terminal is set equal to 0, and it is assumed that f(0) = 0 for
t < 0. Since (2.3) and (2.4) involve the variable of integration within the exponent, then this
implies memory in the order, with the past states having a stronger effect on the order for
definition (2.4) [24]. Also, the full convolution form of (2.4) enables use of the convolution
properties to study the operator.

Similarly, a VO derivative definition can be obtained by directly substituting q = q(t)
in the Riemann-Liouville fractional derivative definition [23] valid for 0 < q < 1:
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definitions that satisfy this property, one is more efficient from the numerical standpoint,
and is therefore adopted in the remainder of this work. The appropriate operator then is used
to study the somewhat familiar problem of a harmonically forced oscillator with viscoelastic
damping. The goal of this second part of this work is to illustrate how a familiar problem in
dynamics can be used to understand the meaning of a VO operator, and to understand how
the dynamics in this familiar problem is affected by the physical parameters of the system
using a VO analysis.

The next section presents an overview of the various VO operator definitions and a
brief comparison of the VO operators applied to a harmonic and other bounded function.
Subsequent to selecting the operator, we propose a VO model for the harmonically forced
oscillator with viscoelastic damping of order p (0 < p < 1) and conduct a stationary analysis
that yields a very concrete meaning to the order of the operator.

2. Variable Order Operators

The VO operator definitions that have been proposed are either direct extensions of
the fractional calculus definitions or generalizations that arise from Laplace or Fourier
transformations. In the direct extension approach, the constant exponent in the fractional
operator is replaced with a function. For example, a VO integral is defined in [23] as
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∫ t
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When q(t) = α = constant, then the αth-order fractional integral is recovered. Other
definitions can be formulated by changing the form of the argument of the exponent to be
q = q(σ) or q = q(t − σ) and considering the Gamma function under the integral sign [24, 25]:
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if f(0) is a true constant, such that f(0−) = f(0+) = a, then (2.9) would return 0 for the
derivative, whereas (2.10)will not.

In summary, there are a total of nine VO operator definitions to be compared:

1Dq(t)
0 f(t) =

1
Γ
[
1 − q(t)

]
d
dt

∫ t

0

f(σ)

(t − σ)−q(t)
dσ, (2.11)

2Dq(t)
0 f(t) =

f(t)

Γ
[
1 − q(t)

]
(t)q(t)

+
q(t)

Γ
[
1 − q(t)

]
∫ t

0

f(t) − f(σ)

(t − σ)1+q(t)
dσ, (2.12)

3−5Dq(t)
0 f(t) =

d
dt

(∫ t

0

(t − σ)q(t,σ)−1

Γ
[
q(t,σ)

] f(σ)dσ

)
, (2.13)

6−8Dq(t)
0 f(t) =

∫ t

0

(t − σ)q(t,σ)−1

Γ
[
q(t,σ)

] f (1)(σ)dσ, (2.14)

9D−q(t)
0 f(t) =

1
Γ
[
1 − q(t)

]
∫ t

0+
(t − σ)−q(t)f (1)(σ)dσ +

(
f(0+) − f(0−)

)
t−q(t)

Γ
[
1 − q(t)

] , (2.15)

where q(t,σ) in definitions (2.13) and (2.14) signify the three arguments: q(t,σ) = q(t),
q(t,σ) = q(σ), and q(t,σ) = q(t−σ). Each of the above definitions is defined for real derivative
orders between 0 and 1. The value at all the lower terminals is set to 0, since we are interested
in applying the operators to physical processes not necessarily at steady state (we examine
a stationary problem in the next section). As is the case with fractional derivatives, there is
no single VO derivative (or integral) definition that is widely considered to be the “correct”
definition. Samko and Ross prefer definition (2.12) because the operator retains the symmetry
on power functions that is found in the case of constant orders, that is:

Dq(t)
c+ + (t − c)α =

Γ[α + 1]
Γ
[
α + 1 − q(t)

](t − c)α−q(t) (2.16)

for 0 < Re q(t) < 1 and α > −1 [6]. Lorenzo and Hartley prefer the full convolution VO
integral definition (2.4) because it satisfies the index rule for certain functions [25] and is
time-invariant [24].

The approach chosen here is to determine which operator when acting upon a
function returns the fractional derivative of the function at the corresponding time. This is
an important characteristic from the aspect of physical modeling because it signifies that the
operator yields a continuous transition of all orders of differentiation between integer orders.
Thus, a smooth transition from zero-order dynamics to first-order dynamics is possible. For
a qualitative comparison of the the VO operators, we look at the q(t) = t derivative of
two bounded functions: sin(2πt), and erfc(t). The q(t) = t derivative of both functions is
computed numerically using a product trapezoidal rule to evaluate the convolution integrals
[3, 26]. Plots of the t derivative of sin(2πt) and erfc(t) are shown in Figures 1-2. The 0, 0.25,
0.50, 0.75, and 1st-order derivatives of the sinusoidal function are shown for comparison
since both the Riemann-Liouville and Caputo fractional derivatives return the same result.
We show only the 0- and 1st-order derivatives of the erfc function since the different
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Conclusions

• Fitting data using the Mittag-Leffler function is a natural 
step in approximation 

• Fitting data using the Mittag-Leffler function is a kind of  
“autotuning fitting” – it has capability of uncovering those 
characteristics of the data which may be unnoticed by a 
human

• Fitting data using the M-L function can be used for 
identification of  fractional-order and variable-order 
systems

• Fitting data using the M-L function can be used for re-
formulation of basic laws in various fields of science

Our ML menu for take-away:  

1.  Collect your experimental data

2.  Fit them using the Mittag-Leffler function

y = y0 t
β−1Eα,β(a t

α)

3.  Take away your fractional-order model
C
0D

α
t y(t)− k y(t) = 0, y(0) = y0

But:

Which criterion to use 
for fitting? 

Least Squares
Revisited
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! Outline ¢

• The method

‣ History of the least squares method

‣ Why squares?

‣ The method of least circles!

‣ Arguments in favor of orthogonal 
distance regression

• State space description of national 
economies

• Results for Scandinavian and V4 countries
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! History of Least Squares ¢
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• 1805:  A.-M. Legendre, “Nouvelles 
methodes pour la determination des 
cometes” — introduced and named the 
method,

• 1809: C. F. Gauss, “Theoria motus 
corporum coelestium in sectionibus 
conicis solem ambientium” — mentioned 
Legendre’s work, stated that he himself 
was using the method since 1795.

• Legendre wrote a letter saying that 
claims of priority should not be made 
without a proof by previous publications.



BTW: meet real Legendre
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! History of Least Squares ¢

• Gauss did not have such a 
publication.

• His own computational notes 
were lost.

• His diary entry of 1798 on 
probability theory different from 
Laplace’s is unclear.

• His colleagues apparently did not 
remember discussions with 
Gauss on this method.

44

• 1816: astronomer H. Olbers 
included in his paper a 
footnote asserting that Gauss 
had shown him LSM in 1802.

• 1832: a similar note made 
by another astronomer, 
F. W. Bessel.

! History of Least Squares ¢

• 1831: H. Schumacher 
suggested repeating the 
calculations from Gauss’s 
1799 paper to demonstrate 
that the method of least 
squares was indeed used by 
Gauss in 1799.

• Gauss did not permit this, 
and wrote that his word 
should be enough.

! History of Least Squares ¢

47

• 1981: S. M. Stigler repeated 
Gauss’s calculations. He could 
not reproduce Gauss's results.

• 1998:  A. Celmins reviewed 
the adjustments suggested by 
Stigler and conclude that the 
results published by Gauss  
certainly are not obtained by a 
minimization of observational 
errors in a least-squares sense.

! History of Least Squares ¢

What method 

 did Gauss use?What method 

 did Gauss use?

! Fitting points to lines ¢
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y = kx + b

�
x− xc

a

�2

+
�

y − yc

b

�2

= 1



! Classical Least Squares ¢
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economy lies approximately in one plane, so the normal vector of this plane and one of its points (for example, the one
coinciding with the data centroid) can be associated with a particular economy.

In the conclusion we discuss some new possibilities that our approach opens in the field of description of complex
dynamic economic systems such as national economies.

2. Classical LSM

The well known LSM is a mathematical procedure for finding the best-fitting curve to a given set of points by
minimizing the sum of the squares of the offsets (“the residuals”) of the points from the curve.

The classical least squares fitting consists in minimizing the sum of the squares of the vertical deviations of a set of
data points

E =
∑

i

[yi − f (xi, !1, !2, . . . , !n)]2 (1)

from a chosen function f.
For a simple illustration, let us recall the classical linear regression problem, in which we have to fit the set of data

by a straight line in 2D plane. This situation is shown in Fig. 1.
Mathematically, we have to determine the parameters k and b of the equation of a straight line:

y = kx + b, (2)

where x—the variable considered as independent; y—the variable considered as dependent on x; k, b—constants, often
called parameters, to be determined so that the line fits the data optimally (in some sense. . .).

To find a way to calculate the parameters, let us return to the simplest case, Eq. (2) and Fig. 1(a), and let us agree to
choose k and b so as to minimize the sum of the squares of the errors. Fig. 1(b) shows these squares graphically. The
natural question is: “Why the squares? Why not just get the smallest sum of distances of the data points from the line?”
The only real explanation is that it is easy to analytically compute k and b to minimize the sum of squares of offsets
of y (vertical offsets), but it is quite difficult to minimize (using analytic derivations) the sum of distances of the data
points from the line, and it is really this ease that is responsible for the generally accepted preference for the squares
of offsets of y.

In fact, we must always keep in mind that the least squares approach is basically a “last resource” tool that is used
for obtaining at least some mathematical model for a process under study, when obtaining a better model by analytical

Fig. 1. Fitting by the classical least squares method (LSM). (a) Fitting data to a straight line. (b) Geometric interpretation (?) of the classical LSM.

Please cite this article as: Petras, I., Podlubny, I., State space description of national economies: The V4 countries. Comput. Statist. Data Anal.
(2007), doi: 10.1016/j.csda.2007.05.014
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Fig. 1. Fitting by the classical least squares method (LSM). (a) Fitting data to a straight line. (b) Geometric interpretation (?) of the classical LSM.

Please cite this article as: Petras, I., Podlubny, I., State space description of national economies: The V4 countries. Comput. Statist. Data Anal.
(2007), doi: 10.1016/j.csda.2007.05.014

• The simplest case is

•  It is easy to analytically evaluate 
    k and b to minimize the sum of 
    squares of offsets of y.

• Many other cases are reduced 
   to the case of a straight line.

! The Method of Least Circles! ¢
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derivations is impossible or extremely time and/or effort consuming. As such, it is based on several presumptions,
which are based only on some intuition or prejudice; among them we must mention postulating the role of
variables (“independent/dependent”) and the type of dependance between them (linear, polynomial, exponential,
logarithmic, etc.).

3. The method of least circles!

Looking at the geometric “interpretation” of the LSM shown in Fig. 1(b), which so often appears in numerous
textbooks and lectures, we can conclude that it is absolutely artificial and does not contain any sign of mathematical
beauty. The picture shown in Fig. 1(b) again provokes the question: “Why the squares?”

To change a viewpoint, let us note that the criterion (1) can be painlessly replaced with

E = !
∑

i

[yi − f (xi, "1, "2, . . . , "n)]2. (3)

Indeed, multiplication by a non-zero number ! does not affect the point of minimum. Only the minimum value of the
criterion function (E) will be multiplied by !—but this value itself is not the subject of interest, since we look for the
values of "1, "2, . . . , "n.

Taking ! = #, we obtain

E =
∑

i

#[yi − f (xi, "1, "2, . . . , "n)]2. (4)

Geometrically, formula (4) means the sum of areas of the circles shown in Fig. 2(a). The radii of the circles in Fig. 2(a)
are the vertical offsets of yi from the fitting line. Each of those circles has two points of intersection with the line. It is
clear that one cannot consider this picture as elegant. Changing the radii slightly, one can preserve n pairs of intersection
of the circles and the line, so one can draw an infinite number of pictures looking similar to Fig. 2(a). But Fig. 2(a) is
just a reformulation of the standard geometric “illustration” of the LSM (recall Fig. 1(b)). Instead of the “LSM” we
now deal with the “least circles method”. But the circles shown in Fig. 2(a) are clearly not the best.

However, the circles shown in Fig. 2(b) are really optimal: the fitting line is a tangent line to all circles. The radii of
the circles in Fig. 2(b) are equal to minimal distances between the points (xi, yi) and the fitting line, and this guarantees
the unique picture.
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Fig. 2. “Least circles” viewpoint. (a) The case of classical least squares fitting. (b) The case of orthogonal distance fitting.
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Fig. 3. The case of non-Cartesian coordinates.

The criterion to minimize in this case is

E =
∑

i

! [d((xi, yi), f (x, "1, "2, . . . , "n))]2, (5)

which is up to a constant multiplier ! the formula known under the name of orthogonal regression or total least
squares (TLS) (de Groen, 1996; Golub and van Loan, 1980; van Huffel and Vandewalle, 1991; Nievergelt, 1994). Here
d((xi, yi), f ) denotes the distance between the point (xi, yi) and the fitting line f.

4. Arguments for orthogonal regression approach

There are numerous works and significant activities devoted to the theory of the total LSM (Program and Book
of Abstracts, 2006). To support its wider applications, we would like to list the following arguments in favour of the
orthogonal distance (or TLS) fitting:

(1) The shortest (orthogonal) distance is the most natural viewpoint on any fitting.
Section 3 and the comparison of Figs. 2(a) and (b) give a clear visual evidence for this.

(2) The sum of orthogonal distances is invariant with respect to the choice of the system of coordinates.
This is obvious, since the distance is independent of the choice of the coordinate system. In addition, let us imagine
that we replace rectangular coordinates with non-rectangular. For example, in Fig. 3 an affine system with the
angle of 60◦ between the axes is shown. In this picture the squares of !yi have even less meaning than in Fig. 1(b).
However, the orthogonal distances, which are also shown in Fig. 3 still have solid interpretation and can be used
for fitting.

(3) There are no conjugate regression lines, which appear after swapping x and y, because in the case of orthogonal
regression the fitting y = f (x) gives exactly the same line as the fitting x = f −1(y).

Suppose one wants to find the dependance between the height (x) and the weight (y) of people. The dependance is
presumed to be linear (a straight line) described by Eq. (2). After determining k and b, this relationship can be used for
estimating the weight of a person of a given height.

However, the viewpoint can be inverted: for a given weight, estimate the height of a person. If one already has
Eq. (2), then the solution should normally be

x = 1
k
y − b

k
. (6)

However, the classical regression approach leads to a different result expressed by a conjugate regression line.
In Fig. 4 a solution to the Nievergelt’s easily understandable example (Nievergelt, 1994) is shown. To make the

situation more obvious, we added one to the ordinates in the Nievergelt’s example, so we used the data shown in
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3. There are no conjugate regression
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   x and y, because in the case of 
   orthogonal regression the fitting 
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Fig. 4. Nievergelt’s example: classical regression versus orthogonal regression.

Table 1
Data for the Nievergelt’s example

x 1 3 4 5 7
y 4 2 6 8 5

Table 1. The classical least squares regression y versus x gives the regression line y = 0.45x + 3.2. After swapping x
and y, classical least squares regression gives the conjugate regression line x = 0.45y + 1.75. However, in the case of
the orthogonal distance regression we obtain the same line y = x + 1 (x = y − 1) independently on the order of x and y.

It is worth noting that all three lines run through the centroid, and that the orthogonal distance regression line is located
between the “scissors” formed by the conjugate regression lines obtained by the classical least squares regression.

(4) There are no problems with causality (normally, determination of what is an independent variable and what is a
dependent variable is simply unclear or even impossible; this is always postulated).
In all textbooks on statistics discussing the classical regression analysis it is always underlined that the choice of
what is the “independent” variable and what is the “dependent” variable is extremely important. However, in many
cases it is not so easy to make a decision what is what, and justification of such a decision is based only on some
subjective judgement or on a prejudice. We already mentioned the relationship between the weight and the height
of people. It is obvious that any of these characteristics can be taken as an independent one.

(5) Implementation of the orthogonal fitting does not depend on the number of dimensions.

To realize this, just recall the square of the distance between the two points P(x1, x2, . . . , xn) and Q(y1, y2, . . . , yn)

in n-dimensional orthogonal coordinate system is

[d(P, Q)]2 =
n∑

i=1

(xi − yi)
2. (7)

5. State space description of national economies

In everyday professional and non-professional communication one can frequently hear the words “state of economy”.
This expression can be given an exact meaning by adopting the tools that are available in the theory of dynamical systems
and in automatic control. Namely, we will use the technique called state space description and phase trajectories.

Please cite this article as: Petras, I., Podlubny, I., State space description of national economies: The V4 countries. Comput. Statist. Data Anal.
(2007), doi: 10.1016/j.csda.2007.05.014

Nievergelt’s example  (1994)

x 1 3 4 5 7
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y = f(x)
x = f−1(y)
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Fitting 3D data by a straight line in 3D

Orthogonal Linear Regression
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Figure 5: Orthogonal distance from a point to a straight line.

Orthogonal Distance Linear Regression

In general, the use of orthogonal distance fitting require the use of numerical

routines for minimization of the criteria. However, even in the case of orthog-

onal distance fitting it is possible to obtain simple formulas for evaluating

the parameters of a straight line that fits a given set of points in a plane

(orthogonal linear regression problem).

Indeed, the orthogonal distance between a point Pi(xi, yi) and a straight

line y = a + bx is (see Fig. 5):

di =
∆yi√

1 + tan2α
=

|yi − (a + bxi)|√
1 + b2

(8)

Let us follow Legendre, and instead of minimizing the sum of orthogonal

distances minimize the sum of their squares:
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As usual, taking partial derivatives with respect to the parameters a and

b equal zero,
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we have two solutions:
y = a1 + b1x, y = a2 + b2x b1 b2 = −1

Take that b that gives the smaller criterion value. 

! State space for economies ¢
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State variables                    :
• GDP rate
• unemployment rate
• inflation rate

State of economy at 
is described by

The set of points                       
is the trajectory of the economy.

t = t∗

x(t), y(t), z(t)

{x(t∗), y(t∗), z(t∗)}

{x(t), y(t), z(t)}, t ∈ [T1, T2]

Further reading
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Illustrations: 
Giovanni Battista Braccelli, 
Bizzarie di Varie Figure, 
Lisvorno, 1624.
(available at:  The L. J. Rosenwald Collection, #1345, Library of Congress)
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