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The starting point in developing a new capacitor mod-
el is Curie s law of 1889 (1). This is a purely empiric
relation. A constant dc voltage U applied at time ¢ = 0
will produce a current

'("::—fn 0<n<t, t>0 (1)
hy is & constant related to the capacitance of the capac-
itor and the kind of diclectric. n is another constant, n
close to 1.0 for capacitor dielectrics, and is related to the
losses of the capacitor. The lower the losses, the closer
to 1.0 is n. This will be verified later in this Section, see
also Appendix A.

For many years we have almost daily verified Equa-
tion (1) and altogether we have measured tens of thou-
sands of capacitors of all types and makes and have never
experienced a capacitor that does not closely adhere to
Equation (1). We therefore consider Equation (1) to dis-
play a normal property of all dielectrics and insulators.
This is controversial! For instance von Schweidler [2,3]
was of the opinion that the Curie current is abnormal
and named it accordingly. Many modern workers assent
to the ideas of von Schweidler, for instance [4]. But there
are also a few who disagree, maybe foremost Jonscher,
who in 1977 named the Curie response ‘the universal di-
electric response’ [5]
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Dead matter has memory!

The contemporary art(?)
of data fitting

I. Collect your experimental data

2. Which shape do they remind you? | .

(How many functions do you know?
How many combinations of those can you imagine?) L

3. Use you fit in some way.

(How can you use your fit?

Interpolation, extrapolation — but other uses?)

)

“How many functions...?

® Linear interpolation —
Babylonian astronomers, around 4th century BC

® Quadratic interpolation —
Liu Zhuo, China, around 544-610

® Trigonometrical interpolation —
Hipparchus of Rhodes, around c. 190 — 120 BC,
Ptolemy of Alexandria, around 87—170 AD

® Approximation by circles and ellipses —
Kepler, 1609-1619

® Approximation of growth and decay
using exponential function —
physics, chemistry, biology of last couple of centuries

In fact, data fitting is done with the help
of solutions of differential equations

y=kx+b
y=Ce*®

y = asin(wz) + bcos(wz)

y = Aek? sin(wz) + BeM® cos(wz)

yl/zo
y —ky=0
y//+w2y:0
" !
azy” + a1y +aoy =0

Instead of postulating the type of the fitting function, we can postulate
the type of the differential equation; its coefficients must be determined.

Ay + By +Cy =0




Professor Donald E. Knuth,
creator of TEX:

“As far as the spacing in mathematics
is concerned...

I took Acta Mathematica, from 1910
approximately; this was a journal in
Sweden ... Mittag-Leffler was the
editor, and his wife was very rich, and
they had the highest budget for making
quality mathematics printing. So the
typography was especially good in
Acta Mathematica.”

(Questions and Answers with Prof. Donald E. Knuth,
Charles University, Prague, March 1996)

G. M. Mittag-Leffler

Sur la représeutation analytique d'une branche uniforme d'une fonction monogene. 45

nulle part elleméme, renfermant le point a, et tel que la branche de la
fonction F(x), formée par P(z|a) et sa continuation analytique a P'intérieur
de K, reste uniforme et réguliére, nous désignerons cette branche par FK(x).

Le probléme dont nous allons nous occuper_sera de trouver une repré-
sentation analytique d'une branche FK{a) choisie aussi étendue que possible.

De la - définition méme de la fonction analytique F(xz), et de celle
de la branche FK(z), résulte immédiatement une sorte de représentation
analytique de la branche FK(z) en question.

En effet, pour obtenir une représentation de cette branche, il suffit
d'effectuer un nombre dénombrable de prolongements analytiques de $(z|a),
par exemple

Bla) =3 L (dﬂgﬁ(z))m“ (& — a),

i 12

y=0,1,2,...; @ = a; Bz|e) = P(z|a)
Les sérics P,(x]a,) sont formées au moyen des éléments

(d/‘FK(mz) .

Gzena)

dar

The Mittag-Leffler function

00 "
zZ
Bop(?) =) w7 (@>0, 8>0
4(2) ;F(wk = @ 8> 0)
€ » & @ 7 [ ©Web | wwwmathworks.com/matlabcent
ﬂMATLAB Search: _ File Exchange

File Exchange  Answers  Newsgroup  Link Exchange  Blogs  Trendy Cody  Cont
File Exchange

Mittag-Leffler function

by Igor Podiubny 17 Oct 2005 (Updated 07 Sep 2012) 4.6 22 ratings
Rate this file
Calculates the Mittag-Leffler function with desired
62 Downloads (last 30 days)
accuracy.
File Size: 2.74 KB
Qg Watch this File File ID: #6738

Most used definitions of fractional differentiation

t
. . . . 1 a\" f(r)dr
Riemann-Liouville, 1920s:  pe (1) — — (7> / R (n—1<a<n)
(Letnikov, 18705) ' Tn—a)\dt) J (t-m =+
1 [ f™ma
Caputo, 1967: RO e / (tff T()Z),,,:l, (n-1<a<n)

Def(t)=D“*D*...D*f(t), (a= i:ak: n—1<a<n)
k=1

Miller-Ross, 1990s
(Dzhrbashyan, 1960s)

Griinwald-Letnikov, 1860s DYF(4) = lim h—“ 1 k(“) t— kh
(Liouville, 1830s) 1 h—0 LX:;)( ) n i )

Fitting data using the Mittag-Leffler function
y=yoe y'(t) —ky(t) =0, y(0)=uyo

y=yot’ ' E,p(at®)

y = yo Ea,1(at®) §Dfy(t) — ky(t) =0, y(0) =yo

Fitting the experimental data with the M-L function
immediately gives the basic FDE describing the process.




Just supply your data...
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Fitting data using the Mittag-Leffler function

# Watch this File

Just supply your data...

y(t) = Ct° "V E, 5(at®)

>

Fitting back the noised Mittag-Leffler function

- Original:

y=1yot’ 1B, 5(at®)

a = 1.5,
8=1,
Yo = 1
a=—0.2

Noise:
yl = 1 * x."(beta-1) .* mlf(alfa, beta, -0.2%x.%alfa, 7) + (-.05 + .l*rand(size(x)));
y2 = 1 * x."(beta-1) .* mlf(alfa, beta, -0.2*x."alfa, 7) + (-.05 + .l*rand(size(x)));
y3 = 1 * x."(beta-1) .* mlf(alfa, beta, -0.2*x."alfa, 7) + (-.05 + .l*rand(size(x)));

Fitting: o =14934, $=09934 y,=1.0084 a=—0.1985

Fitting the complementary error function

. Original:

y = elerfc(Vt)

eterfe(Vt) = E1/2,1(*\/¥)

Noise:

y1l = exp(x).*erfc(sgrt(x)) + (-.02 + .04*rand(size(x)));
y2 = exp(x).*erfc(sgrt(x)) + (-.02 + .04*rand(size(x)));
y3 = exp(x).*erfc(sgrt(x)) + (-.02 + .04*rand(size(x)));

Fitting: o =0.4503, B=0.9861, yo=10525 a=—1.1045

Fitting the cosine function

: Original:

y = cos(t)

cos(t) = Ezyl(—t2)

Noise:

yl = cos(x) + (-.1 + .2*rand(size(x)));
y2 = cos(x) + (-.1 + .2*rand(size(x)));
y3 = cos(x) + (-.1 + .2*rand(size(x)));

Fitting: o =2.0029, 5 =0.9891, yo=0.9855, a=—0.9967

Fitting the sine function

. Original:
y = sin(t)

sin(t) = tE212(7t2)

F R R R T T
Noise:

yl = sin(x) + (-.2 + .4*rand(size(x)));
y2 = sin(x) + (-.2 + .4*rand(size(x)));
y3 = sin(x) + (-.2 + .4*rand(size(x)));

Fitting: a = 2.0056, B =1.9960, yo =0.9700, a = —0.9959




Fitting damped oscillations

= Original:

y=e %1t cos(t)

y(t) = yoEa p(at”)

Noise:

yl = exp(-0.1*x).*cos(x) + (-.05 + .l*rand(size(x)));
y2 = exp(-0.1*x).*cos(x) + (-.05 + .l*rand(size(x)));
y3 = exp(-0.1*x).*cos(x) + (-.05 + .l*rand(size(x)));

Fitting: o = 1.8784, 3 =0.9982, yo =0.9731, a=—1.0089

Fitting data using the Mittag-Leffler function

Example: Growth of the number of FC articles in Web of Science
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Fitting data using the Mittag-Leffler function

Example: Growth of the number of FC articles in Web of Science

600

500 /

400

300

200

100 |-

4

y(t) = 6.1583 1727 > (wlte) — yr)? = 1.0586 - 10*

y(t) = 4.2072 Eo 1550, 2.6082(0.7987 1%1559) > "(y(t) — yx)* = 9.0512 - 10%

The Queen Function

“In fact, ... , functions of Mittag-Leffler type enter as
solutions of many problems dealt with fractional calculus
so that they like to refer to the Mittag-Leffler
function to as the

Queen function of Fractional Calculus,

in contrast with its role of a Cinderella function played
in the past.”
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Models based on Mittag-Leffler functions for
anomalous relaxation in dielectrics

E. Cap it F

e
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pos Fitting of experimental data
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rsised Febreary 27, 19691

Igor Podiubny Abstract. The distribation £2(3) = | - B - ¥').0<a= I; x20, where

E.(x) is the Mittag-Leffler function is studied here with respect to its
Laplace transform. Ity infinie divisbility and geometric infiite divisi-
bilty are proved, along with many other propertics. 1ts relation with
Stable distribution is establivhed. The Mittag-Lefller process is defined
‘and some of ts properties are deduced.

Key words and phrases: Completely monotone function. Laplace trans-
form, infinite divisibliy, geometric infinite divisibiliy, stable process.
o s

*_\—"-—m =

From CO to VO modelling




Fractional order systems and controllers

W4 o EG) UGs) Yo
—»?—» G5 o 6 >

G (s)=

A

1

ansB" + a,,_lsﬂ"“ +..4 alsﬂ1 + aUsBO

a,DP y(6)+a, DP*1y(t) +...+ a,DP y(r) = u(z)

Digital realization:
PLC B & R 2005

Digital realization:

FPGA

Analogue realization

z, z, Zos  Zms

%LJTLghfutghtgﬂ

Z(s) uv; UY. UYN uYﬂ.

'y

Analogue Realizations of Fractional-Order Controllers

Analogue realization

Z(5) =79+ T
Ya(s) +

Fractor: Analogue device

Fractional Calculus Day at USU, April 19, 2005




Bur. Phys. J. Special Topics 193, 93-104 (2011)
© EDP Sciences, Springer-Verlag 2011
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Identification of a VO system
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A Physical experimental study of variable-order
fractional integrator and differentiator

H. Sheng, H.G. Sun®®, C. Coopmans’, Y.Q. Chen®*, and G.W. Bohannan® |

.50,
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Variable-order fractional differentiation
and integration (VO-FD,VO-FI)

Integration and differentiation to a variable fractional order
Integral Transforms and Special Functions

Volume 1, Issue 4,

Authors: et G. Samea®; Borram Ross®
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Identification of a VO system
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Experimental Evidence of Variable-Order Behavior

of Ladders and Nested Ladders

Dominik Sicrociuk, Member: [EEE, Igor Podlubny, Member. IEEE, and Ivo Petris, Member, IEEE

. the

The experimental study of two kinds of dectrical cir- 0.5 is 1), with o & R Sometimes a simplificd notation
cuits, a domino ladder and a nested ladder, i pre hile  {0)(¢) or d" f(#)/dt" is used. In some applications also right-
o ladder is known and already appe: Y sided factional derivatives (I (1) are used, butinthe prese

article we will use only lefi-sided fractional derivatives. Ev
from the notation one can see that evaluation of the lefi

fractional-order operators require the values of the function /(1

in the interval
interval shrink:
cl

1]. When 1 becomes an integer number, this
¢ vicinity of the point {, and we obtain the
integer-order derivatives as particular cases.

are several definitions of the fractional derivatives and

integrals, of which we need only the following two.

Identification of a VO system

The system:

Tt

Equipment used for measurements:

dSPACE ACE Kit 1103

PX4 Expansion Box

NET KIT (Ethernet interface)
RTI CAN Blockset

CLP1103 (connector panel)

Matlab
Real Time Toolbox.

F (fractance with o = 0.5):
domino ladder
with 60 or 130 steps

Identification of a VO system

Voltage [V]

real plant response of domino ladder

plant diagram

o1
008
3 o 0
008l Frequency [Hz]
004 = —— plant diagram
2 .
002 S
4
5
0 10 E o e %0 o i o

o 10
Frequency [Hz]

130 steps in this ladder
(also tried ladder
with 60 steps)

Identification of a VO

Fitting by y =30 Eaa(at®)

in subintervals [0, ,].

Order change for DL060 and DL130 ladder data

100 500 2000 3500 5000 6500 8000 9500

© DLOBO (060 steps ladder)
© DL130 (130 steps ladders)

system

n alpha alpha

DLO6O DL130
100 0.5294 0.5167
200 0.4984 0.4972
300 0.5277 0.4901
500 0.6408 0.4855
1000 0.8195 0.5390
1500 0.8986 0.6350
2000 0.9385 0.7152
2500 0.9523 0.7870
3000 0.9586 0.8306
3500 0.9604 0.8677
4000 0.9620 0.8842
4500 0.9638 0.8900
5000 0.9651 0.9044
5500 0.9661 0.9142
6000 0.9668 0.9201
6500 0.9670 0.9246
7000 0.9674 0.9279
7500 0.9678 0.9307
8000 0.9677 0.9336
8500 0.9676 0.9354
9000 0.9677 0.9373
9500 0.9672 0.9388
10000 0.9672 0.9406




Conclusions

Fitting data using the Mittag-Leffler function is a natural
step in approximation

Fitting data using the Mittag-Leffler function is a kind of
“autotuning fitting” — it has capability of uncovering those
characteristics of the data which may be unnoticed by a
human

Fitting data using the M-L function can be used for
identification of fractional-order and variable-order
systems

Fitting data using the M-L function can be used for re-
formulation of basic laws in various fields of science

Our ML menu for take-away:

I. Collect your experimental data

2. Fit them using the Mittag-Leffler function

y=1yot’ 1B, p(at®)

3. Take away your fractional-order model

§DRy(t) — ky(t) =0, y(0) =yo

But:

Which criterion to use
for fitting?

Least Sq[uaures
Revisited

yoedls, Outline « 5%

® The method

» History of the least squares method
» Why squares?

» The method of least circles!

» Arguments in favor of orthogonal
distance regression

® State space description of national
economies

® Results for Scandinavian and V4 countries

41

% History of Least Squares @k”f

® 1805: A-M.Legendre,“Nouvelles
methodes pour la determination des
cometes” — introduced and named the
method,

o 1809: C.F Gauss,“Theoria motus
corporum coelestium in sectionibus
conicis solem ambientium” — mentioned
Legendre’s work, stated that he himself
was using the method since 1795.

® Legendre wrote a letter saying that
claims of priority should not be made
without a proof by previous publications.

42




BTW: meet real ]Legemudhme

Full story: see Notices of AMS, Dec 2009, Vol. 56, no. | |

43

% History of Least Squares M

® Gauss did not have such a
publication.

® His own computational notes
were lost.

® His diary entry of 1798 on
probability theory different from
Laplace’s is unclear.

® His colleagues apparently did not
remember discussions with
Gauss on this method.

44

% History of Least Squares %

® |8l6:astronomer H. Olbers
included in his paper a
footnote asserting that Gauss
had shown him LSM in 1802.

® |[832:a similar note made
by another astronomer,
F.WV. Bessel.

?";‘b History of Least Squares Q"k"f

® 1831:H.Schumacher
suggested repeating the
calculations from Gauss’s
1799 paper to demonstrate
that the method of least
squares was indeed used by
Gauss in 1799.

® Gauss did not permit this,
and wrote that his word
should be enough.

% History of Least Squares %

® 1981:S. M. Stigler repeated
Gauss’s calculations. He could
not reproduce Gauss's results.

® 1998: A. Celmins reviewed
the adjustments suggested by
Stigler and conclude that the
results published by Gauss
certainly are not obtained by a
minimization of observational
errors in a least-squares sense.

\h@d\
at et
Wha s use?

did G auss

47

')“;‘b F [thltillnlg ]P)(O)funlltS to lines d‘a"‘?

48




s, Classical Least Squiares R, e

minimize
E= Z[,v, — f(xi, 01,0, a)]?

b, Why the Squares ? R ~yal

® The simplest case is P
y=kx+b

® |t is easy to analytically evaluate
k and b to minimize the sum of
squares of offsets of y.

® Many other cases are reduced
to the case of a straight line.

% The Method of Least Circles! (35

E=Y i~ f@ion o)l

E:Zﬂ[,\'i — f@i a0 )]

8, The Method of Least Circles! (35

minimize squares of distances
E=) ald((xiyi), f(x o192, . o))

8

yotls, Argrunientts for «ourlt]huog(o»]nhalll regression R, ol

|.The shortest (orthogonal)
distance is the most natural
viewpoint on any fitting.

2.The sum of orthogonal
distances is invariant with
respect to the choice of the
system of coordinates.

The squares in non-Cartesian
coordinates have even less meaning. / /

o\ Argrumnients for lO)]Flt]hl(ng(O)]Dlalll regression R, ol

3.There are no conjugate regression
lines, which appear after swapping
x and y, because in the case of
orthogonal regression the fitting
y = f(z) gives exactly the same line
as the fitting = = f ' (y).

+ measurements|
—TLs
——LSyvs.x
LSxvs.y
centroid

y
o 2 nv w oA g o N @




yotls, Argrunients for <0)rlt]hu@g@»]ﬂl@ﬂl regression R, ol

4. There are no problems with
causality (normally, determination
of what is an independent
variable and what is a dependent
variable is simply unclear or even
impossible; this is always
postulated).

5. Implementation of the
orthogonal fitting does not
depend on the number of
dimensions.

[d(P, Q)P =) (xi — y)™.

i=1

P(x1,x2, ..., Xp)

Q1 Y25 -5 Yn)

b, “The ]Fll[ig]hut of the Bumblebee” %%

Fitting 3D data by a straight line in 3D

(O)Jrlt]huo»g(onnlall Linear Regression

Ay [y — (a+bx;)|

d = —
VIt tanka V1 +b24

Following Legendre

X [y — (a+ b)) 1

. )
B = =—— |y~ ba;
=X 1+b2§["’ (a+ba)]
oF oB:
da 0 b =0

we have two solutions:

RN

Take that b that gives the smaller criterion value.

y=a+ bz, y=as+ b by by = —1

57

% State space for economiies d&"?

State variables z(t),y(t), 2(¢):
e GDP rate
* unemployment rate
¢ inflation rate

State of economy at t =t,
is described by {z(t.),y(t.), 2(t.)}

The set of points{z(t),y(t), 2(t)}, t € [T, T]
is the trajectory of the economy.

Fuorther Jﬁe:audliilnvg

Computational Statistics & Data Analysis

52, 1ssue 2, 15 October 2007, Pages 1223-1233

State space description of national economies: The V4 countries

Vo Petras & * &, Igor Podkibay &

Thank you!

lllustrations:

Giovanni Battista Braccelli,
Bizzarie di Varie Figure,

Lisvorno, 1624.
(available at: The L. J. Rosenwald Collection, #1345, Library of Congress)
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