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Fig. 3. The case of non-Cartesian coordinates.

The criterion to minimize in this case is

E =
∑

i

! [d((xi, yi), f (x, "1, "2, . . . , "n))]2, (5)

which is up to a constant multiplier ! the formula known under the name of orthogonal regression or total least
squares (TLS) (de Groen, 1996; Golub and van Loan, 1980; van Huffel and Vandewalle, 1991; Nievergelt, 1994). Here
d((xi, yi), f ) denotes the distance between the point (xi, yi) and the fitting line f.

4. Arguments for orthogonal regression approach

There are numerous works and significant activities devoted to the theory of the total LSM (Program and Book
of Abstracts, 2006). To support its wider applications, we would like to list the following arguments in favour of the
orthogonal distance (or TLS) fitting:

(1) The shortest (orthogonal) distance is the most natural viewpoint on any fitting.
Section 3 and the comparison of Figs. 2(a) and (b) give a clear visual evidence for this.

(2) The sum of orthogonal distances is invariant with respect to the choice of the system of coordinates.
This is obvious, since the distance is independent of the choice of the coordinate system. In addition, let us imagine
that we replace rectangular coordinates with non-rectangular. For example, in Fig. 3 an affine system with the
angle of 60◦ between the axes is shown. In this picture the squares of !yi have even less meaning than in Fig. 1(b).
However, the orthogonal distances, which are also shown in Fig. 3 still have solid interpretation and can be used
for fitting.

(3) There are no conjugate regression lines, which appear after swapping x and y, because in the case of orthogonal
regression the fitting y = f (x) gives exactly the same line as the fitting x = f −1(y).

Suppose one wants to find the dependance between the height (x) and the weight (y) of people. The dependance is
presumed to be linear (a straight line) described by Eq. (2). After determining k and b, this relationship can be used for
estimating the weight of a person of a given height.

However, the viewpoint can be inverted: for a given weight, estimate the height of a person. If one already has
Eq. (2), then the solution should normally be

x = 1
k
y − b

k
. (6)

However, the classical regression approach leads to a different result expressed by a conjugate regression line.
In Fig. 4 a solution to the Nievergelt’s easily understandable example (Nievergelt, 1994) is shown. To make the

situation more obvious, we added one to the ordinates in the Nievergelt’s example, so we used the data shown in
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1. The shortest (orthogonal) 
   distance is the most natural
   viewpoint on any fitting. 

2. The sum of orthogonal 
   distances is invariant with 
   respect to the choice of the 
   system of coordinates.
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3. There are no conjugate regression
   lines, which appear after swapping 
   x and y, because in the case of 
   orthogonal regression the fitting 
                gives exactly the same line 
   as the fitting                 .
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Fig. 4. Nievergelt’s example: classical regression versus orthogonal regression.

Table 1
Data for the Nievergelt’s example

x 1 3 4 5 7
y 4 2 6 8 5

Table 1. The classical least squares regression y versus x gives the regression line y = 0.45x + 3.2. After swapping x
and y, classical least squares regression gives the conjugate regression line x = 0.45y + 1.75. However, in the case of
the orthogonal distance regression we obtain the same line y = x + 1 (x = y − 1) independently on the order of x and y.

It is worth noting that all three lines run through the centroid, and that the orthogonal distance regression line is located
between the “scissors” formed by the conjugate regression lines obtained by the classical least squares regression.

(4) There are no problems with causality (normally, determination of what is an independent variable and what is a
dependent variable is simply unclear or even impossible; this is always postulated).
In all textbooks on statistics discussing the classical regression analysis it is always underlined that the choice of
what is the “independent” variable and what is the “dependent” variable is extremely important. However, in many
cases it is not so easy to make a decision what is what, and justification of such a decision is based only on some
subjective judgement or on a prejudice. We already mentioned the relationship between the weight and the height
of people. It is obvious that any of these characteristics can be taken as an independent one.

(5) Implementation of the orthogonal fitting does not depend on the number of dimensions.

To realize this, just recall the square of the distance between the two points P(x1, x2, . . . , xn) and Q(y1, y2, . . . , yn)

in n-dimensional orthogonal coordinate system is

[d(P, Q)]2 =
n∑

i=1

(xi − yi)
2. (7)

5. State space description of national economies

In everyday professional and non-professional communication one can frequently hear the words “state of economy”.
This expression can be given an exact meaning by adopting the tools that are available in the theory of dynamical systems
and in automatic control. Namely, we will use the technique called state space description and phase trajectories.
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y 4 2 6 8 5

! Arguments for orthogonal regression ¢

y = f(x)
x = f−1(y)
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4.  There are no problems with
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    variable is simply unclear or even 
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Fitting 3D data by a straight line in 3D



Orthogonal Linear Regression
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Figure 5: Orthogonal distance from a point to a straight line.

Orthogonal Distance Linear Regression

In general, the use of orthogonal distance fitting require the use of numerical

routines for minimization of the criteria. However, even in the case of orthog-

onal distance fitting it is possible to obtain simple formulas for evaluating

the parameters of a straight line that fits a given set of points in a plane

(orthogonal linear regression problem).

Indeed, the orthogonal distance between a point Pi(xi, yi) and a straight

line y = a + bx is (see Fig. 5):

di =
∆yi√

1 + tan2α
=

|yi − (a + bxi)|√
1 + b2

(8)

Let us follow Legendre, and instead of minimizing the sum of orthogonal

distances minimize the sum of their squares:

E2
⊥ =

n�

i=1

[yi − (a + bxi)]2

1 + b2
=

1

1 + b2

n�

i=1

�
yi − (a + bxi)

�2
(9)

As usual, taking partial derivatives with respect to the parameters a and

b equal zero,

∂E2
⊥

∂a
= 0,

∂E2
⊥

∂b
= 0,
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we have two solutions:
y = a1 + b1x, y = a2 + b2x b1 b2 = −1

Take that b that gives the smaller criterion value. 

! A MATLAB routine ¢
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function [Err, N, P] = 
fit_3D_data (XData,  YData,  ZData,
            geometry,  visualization,  sod)

Input parameters:
• XData: input data block -- x: axis
•  YData: input data block -- y: axis
•  ZData: input data block -- z: axis
•  geometry: type of approximation ('line','plane') 
•  visualization: figure ('on','off') -- default is 'on'
•  sod: show orthogonal distances ('on','off') -- default is 'on'

Return parameters:
• Err: error of approximation - sum of orthogonal distances 
• N: normal vector for plane, direction vector for line
• P: point on plane or line in 3D space

 Available at MATLAB Central File Exchange:   http://www.mathworks.com/matlabcentral/fileexchange/

Let’s borrow an 
idea from the 
control theory
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! State space for economies ¢
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State variables                    :
• GDP rate
• unemployment rate
• inflation rate

State of economy at 
is described by

The set of points                       
is the trajectory of the economy.

t = t∗

x(t), y(t), z(t)

{x(t∗), y(t∗), z(t∗)}

{x(t), y(t), z(t)}, t ∈ [T1, T2]

! Scandinavian countries ¢
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Classical representation of the data: 

Inflation

Unemployment

GDP

! Scandinavian countries ¢
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Trajectories of the economies: 
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! Scandinavian countries ¢

13

Characteristic planes 
                of the economies: 

! V4 countries ¢
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(a) Czech Republic (b) Hungary

(c) Poland (d) Slovak Republic

Characteristic planes 
                of the economies: 

Country Centroid Normal vector  L1  norm L! norm

Sweden [2.24, 4.78, 4.56] [0.56, 0.36, 0.73] 1.67 0.73

Finland [2.60, 3.89, 8.37] [-0.02, -0.80, -0.59] 1.42 0.80

Denmark [1.95, 3.72, 7.73] [0.94, 0.20, -0.26] 1.41 0.94

Norway [3.02, 4.40, 3.76] [-0.06, -0.25, -0.96] 1.29 0.96

Slovakia* [13.87,4.55, 9.14] [0.67, 0.71, -0.18] 1.57 0.71

Czech Rep* [5.77, 1.84, 7.61] [0.76, 0.45, 0.46] 1.67 0.76

Poland* ["0.4,"0.9, 0.11] [-0.40, -0.90, 0.11] 1.42 0.90

Hungary* [0.73, 0.67,"0.05] [0.73, 0.67, -0.05] 1.46 0.73

“Planes of national economies”
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! FDEs + Least Circles
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Modeling of the national economies in state-space: A fractional calculus approach

Tomáš Škovránek, Igor Podlubny, Ivo Petráš ⁎
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A new approach to macroeconomic modeling is presented and illustrated by an application to modeling the
behavior of national economies of the three Commonwealth countries. The developed approach is based on
three essential modern tools.
The first is state-space modeling adopted from the classical control theory, and as state variables describing
the behavior of a system the gross domestic product (GDP), inflation, and unemployment rate (UE) were
chosen. The history of development of the modeled economy in time, which is represented by triples of the
values of GDP, inflation, and UE, is then considered as a trajectory in state-space.
The second tool is fractional-order differential equations; solutions of a system of three fractional-order
differential equations are used for fitting the available economic data.
The third tool is the orthogonal distance fitting method, which is used for identification of the parameters of
the system of fractional differential equations that is used as a general model.
The obtained models of the state-space trajectories of the economics of the United Kingdom, Canada, and
Australia have similar shape (which can be explained, for example, by similarities in their political and
economical systems) but look like stretched compared to each other (which can be explained, for example,
by different size of population and its social structure).

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that macroeconomic model is a tool designed to
describe the operation of the economy of a country or a region. Such
model is usually created to examine the dynamics of quantities as, for
instance, level of prices, unemployment, total income, total amount of
goods and services produced, investment demand, etc. There are many
different types of themacroeconomic models which can illustrate basic
theoretical principles and macroeconomic theories. They are widely
used in organizations and national governments to generate economic
forecasts (Clements and Hendry, 1995).

Many of the macroeconomic models are static, but there are also
some dynamic models, describing the economy over the time periods.
The variables that appear in these models represent macroeconomic
aggregates (such as GDP or employment) while the equations
relating these variables are intended to describe economic decisions
(Almon, 2001).

Models created in 1940s were mostly linear and used time series
analysis. These simple empirical models described relations between
aggregate quantities, butmany addressed amuchfiner level of detail as,
for example, studying the relations between employment, investment,
and other variables in many different industries. In the first part of the

20th century a negative correlation between inflation and unemploy-
ment called the Phillips curve (Nymoen, 2005) was shown. Empirical
macroeconomic forecasting models suggested that unemployment
could be permanently lowered by permanently increasing inflation.
Robert Lucas in 1976 showed that the Phillips curve in the 1970s was
just one example of a general problem with empirical forecasting
models. Based on this conclusion, the economists of the 1980s began to
construct microfounded macroeconomic models based on rational
choice, which have come to be called dynamic stochastic general
equilibriummodels. There are alsomany othermodelingmethodologies
which have been described over the last two decades, as for instance
computable general equilibrium modeling, agent-based computational
economics modeling, and so on.

Basically, there are currently two principal approaches in economics
to modeling themacro-economy (Ormerod, 2009). The first is based on
the work of Nobel Prize winner Larry Klein in his 1947 paper and it
consists of the familiar Keynesian system of macro-theoretical relation-
ships or the fitting curves or planes through empiricalmacro-data using
econometric (statistical) techniques to estimate parameters for these
theoretical relationships. The second and much more recent approach,
which finds widespread support among academic economists, is based
upon micro theoretical relationships. This approach consists in using
the core model of individual behavior in economic theory, that of the
rational agent who forms rational expectations about the future. The
macro-econometric models also face serious problems (de Grauw and
Honkapohja, 2009; Ormerod, 2009). First, a principal use of these
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state variables, can be different, not necessarily three). Choosing x1,

x2, and x3 as the three coordinates, we can assign a point (x1(t),x2(t),
x3(t)) to each value of t — that is, we assign a point in a 3D space to a
state of the considered process at time t. The variables x1, x2 and x3
are called the state variables. The line formed by the points (x1(t),x2(t),
x3(t)) when t takes on the values from a given interval (usually [0,T] for
some finite T, or [0,∞)) is called the phase trajectory of the process.

5. Modeling of the national economies: a case study of three
Commonwealth countries

For the case study three countries of the Commonwealth have
been chosen. As state variables for this study, we selected those
which are standard: gross domestic product (GDP), inflation (INF),
and unemployment rate (UE). Obviously, these economic indicators
cannot be readily divided into clear groups of independent and de-
pendent variables. In the subsequent sections, we demonstrate the
advantages of the state space description of national economies and
possible ways for further developments and scientific investigations.

Let us consider a model of an economic (or financial) system in
the following form:

0D
q1
t x1 tð Þ ¼ a11x1 tð Þ þ a12x2 tð Þ þ a13x3 tð Þ þ c1;

0D
q2
t x2 tð Þ ¼ a21x1 tð Þ þ a22x2 tð Þ þ a23x3 tð Þ þ c2;

0D
q3
t x3 tð Þ ¼ a31x1 tð Þ þ a32x2 tð Þ þ a33x3 tð Þ þ c3:

ð10Þ

To solve the system in Eq. (10) the following algorithm was used.
First, the differentiation matrix D has to be created using the “matrix
approach”. For this purpose MATLAB function ban has been imple-
mented (function ban is one of the functions from the fractional
calculus toolbox for MATLAB and Simulink (Podlubny et al., 2008)). A
Kronecker product of matrix of coefficients A and identity matrix En,
where n is the number of nodes, in which the derivatives are calculated,
is also needed:

C ¼ A⊗En ð11Þ

Then the matrix of the resulting algebraic system is:

M ¼ D−C: ð12Þ
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Fig. 2. Time responses of the state variables for time equal to one year.

Table 1
Fractional orders qopt.

q1 q2 q3

UK 0.1176 0.1186 0.1289
Canada 0.7676 0.5725 0.4253
Australia 0.9000 0.1177 0.8200

Table 2
Vector copt.

c1 c2 c3

UK −5.9393 8.5111 −10.1149
Canada −1.7333 −15.1195 7.3244
Australia −2.4495 0.1737 10.1328

Table 3
Matrix Aopt.

UK 13.8175 3.6989 −4.8427
−17.5707 −3.8700 6.5746

20.0000 5.8674 −6.5842
Canada 19.1264 2.7012 5.7465

12.7331 1.2701 −7.7151
−2.4322 1.3836 4.1202

Australia 11.1952 4.0135 13.0130
0.2913 1.3132 −0.6071

−40.8383 1.4169 23.4600

Remark: matrix Aopt has the following structure Aopt ¼
a11 a12 a13
a21 a22 a23
a31 a32 a33

0

@

1

A:
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The vector of the right-hand side c has to be transformed
(reshaped) to a form of a column vector r, where the length is equal
to 3×n (n is the number of data points), to be able to fit the equation:

X ¼ M−1 r ð13Þ

where the solution X is matrix of coordinates [x1(t),x2(t),x3(t)] of the
points lying on the fitting curve.

The optimal values of the model parameters q, A and c are obtained
byminimizing the sumof orthogonal (perpendicular) distances of data-
points Pk=[GDPk, INFk,UEk], describing the state of economy from the
model trajectory T(t), and is defined by:

E ¼
Xn

k¼1

d Pk; T tð Þð Þ; ð14Þ

where n is equal to the number of data points. The result of this
optimization process is the optimal values of parameters qopt ;Aopt; copt ,
and the matrix of fitting points X describing the fitting trajectory.

The optimal parameters qopt ;Aopt ; copt , which were found for each
country, are listed in Tables 1–3. The errors of approximation can be
expressed by the orthogonal distance E.

In the case study we used the data about the national economies
of three Commonwealth countries (UK, Canada, Australia) that are
available for the period from 1980 to 2009, and the used indicators
were GDP, inflation, and unemployment rate.

For instance, Fig. 3 shows the states of UK economy listed in
Appendix A (data points) and the fitting state trajectory (solid line)
obtained from the model in Eq. (10) and optimal values of parameters
shown in Tables 1–3 for time period 1980–2009. It is interesting that
even a simple linear fractional-order model (Eq. (10)) can satisfac-
torily describe the behavior of the national economy.

In Fig. 4 the state-space trajectories of selected Commonwealth
countries obtained by fitting the data for time period of years 1980–2009
are depicted.

6. Discussion

Definition of the state space by using such triple of variables as
GDP, inflation and unemployment rate was done according to
previous experience with modeling of the national economies in
state space with the help of static models expressed by planes, to
which the state-space trajectories belong (Petráš and Podlubny,
2007).

The parameters of the models for three Commonwealth countries
are presented in Tables 1–3. These parameters have been used for
calculation of the state space trajectories for each country for the
considered time period.

The obtained state-space trajectories (Fig. 4) of the economies of
the United Kingdom, Canada, and Australia have similar shape (which
can be explained, for example, by similarities in their political and
economical systems) but look like stretched compared to each other
(which can be explained, for example, by different size of population
and its social structure).

7. Conclusions

In this article we proposed a new dynamical macroeconomic model
of the national economies. This model is in the form of a system of
fractional differential equations, which describe the economic system in
the state space. Such an approach has many convenient and useful
properties and allows using the tools of the classical control theory for
investigation of the state-space trajectories.

Using the fractional-orders leads to more accurate models not
only because of additional model parameters (i.e. non-integer orders
q1, q2, q3,) but mainly due to the fact that evaluation of fractional
derivatives uses the previous states of the system.

The suggested approach can be used for: (i) modeling and control
of national economies, (ii) stability investigation of national econo-
mies modeled in this way (standard method can be used for checking
the eigenvalue of matrix Aopt), and (iii) forecasting and prediction of
the behavior of national economies for time horizon perhaps even
more than the usual 2 years.

In our further work we focus on developing techniques for the
control of the national economies described by systems of fractional
differential equations. It is alreadywell known that an economic system
as a whole can be controlled by one variable, e.g. GDP, inflation, or
unemployment rate, respectively.
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• A new approach to description of national 
economies has been presented.

• Gross domestic product, inflation, and 
unemployment rates were taken as state variables.

• The trajectory of the economy of each of the 
considered countries lies approximately in one 
plane.

• Economic development of each country can be 
associated with a corresponding plane in the state 
space (characteristic plane).

• Obtaining trajectories of national economies 
allows it classification as stable, unstable, or cyclic 
dynamical systems.
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