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Chapter 1

Geometric and Physical
Interpretation of Fractional
Integration and Fractional
Differentiation

1.1 Introduction

It is generally known that integer-order derivatives and integrals have clear physical
and geometric interpretations, which significantly simplify their use for solving applied
problems in various fields of science.

However, in case of fractional-order integration and differentiation, which represent a
rapidly growing field both in theory and in applications to real-world problems, it is not
so. Since the appearance of the idea of differentiation and integration of arbitrary (not
necessary integer) order there was not any acceptable geometric and physical interpre-
tation of these operations for more than 300 years. The lack of these interpretations has
been acknowledged at the first international conference on the fractional calculus in New
Haven (USA) in 1974 by including it in the list of open problems [21]. The question
was unanswered, and therefore repeated at the subsequent conferences at the University
of Strathclyde (UK) in 1984 [15] and at the Nihon University (Tokyo, Japan) in 1989
[19]. The round-table discussion [13, 10, 14] at the conference on transform methods
and special functions in Varna (1996) showed that the problem was still unsolved, and
since that time the situation, in fact, still did not change.

Fractional integration and fractional differentiation are generalisations of notions of
integer-order integration and differentiation, and include n-th derivatives and n-folded
integrals (n denotes an integer number) as particular cases. Because of this, it would

7



CHAPTER 1. GEOMETRIC AND PHYSICAL INTERPRETATION 8

be ideal to have such physical and geometric interpretations of fractional-order opera-
tors, which will provide also a link to known classical interpretations of integer-order
differentiation and integration.

Since the need for the aforementioned geometric and physical interpretations is gener-
ally recognised, several authors attempted to provide them. Probably due mostly to
linguistical reasons, much effort have been devoted to trying to relate fractional inte-
grals and derivatives, on one side, and fractal geometry, on the other [18, 27, 9, 16, and
others]. However, it has been clearly shown by R. Rutman [22, 23] that this approach
is inconsistent.

Besides those “fractal-oriented” attempts, some considerations regarding interpretation
of fractional integration and fractional differentiation were presented in [16]. However,
those considerations are, in fact, only a small collection of selected examples of appli-
cations of fractional calculus, in which hereditary effects and self-similarity are typical
for the objects modelled with the help of fractional calculus. Although each particular
problem, to which fractional derivatives or/and fractional integrals have been applied,
can be considered as a certain illustration of their meaning, the paper [16] cannot be
considered as a definite answer to the posed question.

A different approach to geometric interpretation of fractional integration and fractional
differentiation, based on the idea of the contact of α-th order, has been suggested by
F. Ben Adda [1, 2]. However, it is difficult to speak about an acceptable geometric
interpretation if one cannot see any picture there.

Obviously, there is still a lack of geometric and physical interpretation of fractional
integration and differentiation, which is comparable with the simple interpretations of
their integer-order counterparts.

In this chapter we present a new approach to solution of this challenging old prob-
lem.

We start with introducing a simple and really geometric interpretation of several types of
fractional-order integration: the left-sided and the right-sided Riemann–Liouville frac-
tional integration, the Riesz potential, and the Feller potential.

Based on this, a physical interpretation of the Riemann–Liouville fractional integration
is proposed in terms of inhomogeneous and changing (non-static, dynamic) time scale.
Moreover, on this way we give a new physical interpretation of the Stieltjes integral. We
also try to persuade the readers that the suggested physical interpretation of fractional
integration is in line with the current views on space–time in physics. We also suggest
physical interpretation for the Riemann-Liouville fractional differentiation and for the
Caputo fractional differentiation. Finally, we show that the suggested approach to geo-
metric interpretation of fractional integration can be used for providing a new geometric
and physical interpretation for convolution integrals of the Volterra type.
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1.2 Geometric interpretation of fractional
integration: Shadows on the walls

In this section we first give a geometric interpretation of left-sided and right-sided
Riemann–Liouville fractional integrals, and then consider the Riesz potential.

1.2.1 Left-sided Riemann–Liouville fractional integral

Let us consider the left-sided Riemann–Liouville fractional integral [20, 24] of order
α,

0I
α
t f(t) =

1

Γ(α)

t∫

0

f(τ)(t− τ)α−1dτ, (1.1)

and write it in the form

0I
α
t f(t) =

t∫

0

f(τ)dgt(τ), (1.2)

gt(τ) =
1

Γ(α+ 1)

{
tα − (t− τ)α

}
. (1.3)

The function gt(τ) has an interesting scaling property. Indeed, if we take t1 = kt and
τ1 = kτ , then

gt1(τ1) = gkt(kτ) = kαgt(τ). (1.4)

Now let us consider the integral (1.2) for a fixed t. Then it becomes simply a Stieltjes
integral, and we can utilize G. L. Bullock’s idea [3].

Let us take the axes τ , g, and f . In the plane (τ, g) we plot the function gt(τ) for
0 ≤ τ ≤ t. Along the obtained curve we “build a fence” of the varying height f(τ), so
the top edge of the “fence” is a three-dimensional line (τ, gt(τ), f(τ)), 0 ≤ τ ≤ t.
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This “fence” can be projected onto two surfaces (see Fig. 1.1):

• the area of the projection of this “fence” onto the plane (τ, f) corresponds to the
value of the integral

0I
1
t (t) =

t∫

0

f(τ)dτ ; (1.5)

• the area of the projection of the same “fence” onto the plane (g, f) corresponds to
the value of the integral (1.2), or, what is the same, to the value of the fractional
integral (1.1).

In other words, our “fence” throws two shadows on two walls. The first of them, that
on the wall (τ, f), is the well-known “area under the curve f(τ)”, which is a standard
geometric interpretation of the integral (1.5). The “shadow” on the wall (g, f) is a
geometric interpretation of the fractional integral (1.1) for a fixed t.

Obviously, for gt(τ) = τ both “shadows” are equal. This shows that classical definite
integration is a particular case of the left-sided Riemann–Liouville fractional integration
even from the geometric point of view.

What happens when t is changing (namely growing)? As t changes, the “fence” changes
simultaneously. Its length and, in a certain sense, its shape changes. For illustration,
see Fig. 1.2. If we follow the change of the “shadow” on the wall (g, f), which is chang-
ing simultaneously with the “fence” (see Fig.1.3), then we have a dynamical geometric
interpretation of the fractional integral (1.1) as a function of t.

1.2.2 Right-sided Riemann–Liouville fractional integral

Let us consider the right-sided Riemann–Liouville fractional integral [20, 24],

tI
α
0 f(t) =

1

Γ(α)

b∫

t

f(τ)(τ − t)α−1dτ, (1.6)

and write it in the form

tI
α
0 f(t) =

b∫

t

f(τ)dht(τ), (1.7)

ht(τ) =
1

Γ(α+ 1)

{
tα + (τ − t)α

}
. (1.8)

Then we can provide a geometric interpretation similar to the geometric interpretation
of the left-sided Riemann–Liouville fractional integral. However, in this case there is no
any fixed point in the “fence” base – the end, corresponding to τ = b, moves along the
line τ = b in the plane (τ, g) when the “fence” changes its shape. This movement can be
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observed in Fig. 1.4. (In the case of the left-sided integral, the left end, corresponding
to τ = 0, is fixed and does not move.)

All other parts of the geometric interpretation remain the same: the “fence” changes its
shape as t changes from 0 to b, and the changing shadows of this “fence” on the walls
(g, f) and (τ, f) represent correspondingly the right-sided Riemann–Liouville fractional
integral (1.6) and the classical integral with the moving lower limit:

tI
1
b (t) =

b∫

t

f(τ)dτ ; (1.9)

Obviously, for gt(τ) = τ both “shadows” are equal. Therefore, we see that not only
the left-sided, but also the right-sided Riemann-Liouville fractional integration includes
the classical definite integration as a particular case even from the geometrical point of
view.
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1.2.3 Riesz potential

The Riesz potential [20, 24]

0R
α
b f(t) =

1

Γ(α)

b∫

0

f(τ)|τ − t|α−1dτ (1.10)

is the sum of the left-sided and the right-sided Riemann–Liouville fractional integrals:

0R
α
b f(t) =

1

Γ(α)

t∫

0

f(τ)(t− τ)α−1dτ +
1

Γ(α)

b∫

t

f(τ)(τ − t)α−1dτ. (1.11)

The Riesz potential (1.10) can be written in the form

0R
α
b f(t) =

b∫

0

f(τ)drt(τ), (1.12)

rt(τ) =
1

Γ(α+ 1)

{
tα + sign(τ − t) |τ − t|α

}
. (1.13)

The shape of the “fence”, corresponding to the Riesz potential, is described by the
function rt(τ). In this case the “fence” consists of the two parts: one of them (for
0 < τ < t) is the same as in the case of the left-sided Riemann–Liouville fractional
integral, and the second (for t < τ < b) is the same as for the right-sided Riemann–
Liouville integral, as shown in Fig. 1.5. Both parts are joined smothly at the inflection
point τ = t.

The shape of the “fence”, corresponding to the Riesz potential, is shown in some of its
intermediate position by the bold line in Fig. 1.5. Obviously, Fig. 1.5 can be obtained
by laying Fig. 1.4 over Fig. 1.2, which is a geometric interpretation of the relationship
(1.11).

The shadow of this “fence” on the wall (g, f) represents the Riesz potential (1.10), while
the shadow on the wall (τ, f) corresponds to the classical integral

I(t) =

b∫

0

f(τ)dτ. (1.14)

For α = 1 both “shadows” are equal. This shows that the classical definite integral (1.14)
is a particular case of the Riesz fractional potential (1.10) even from the geometric point
of view. We have already seen this inclusion in the case of the left-sided and the right-
sided Riemann–Liouville fractional integration. This demonstrates the strength of the
suggested geometric interpretation of these three types of generalization of the notion of
integration.
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1.2.4 Feller potential

The Feller potential operator Φαf(t) is, similarly to the Riesz potential, also a linear
combination of the left- and right-sided Riemann–Liouville fractional integrals, but with
general constant coefficients c, d [24, Chap. 3]:

Φαf(t) = c aI
α
t f(t) + d tI

α
b f(t). (1.15)

The geometric interpretation of the Feller potential can be easily obtained by properly
scaling and then superimposing Fig. 1.4 and Fig. 1.2. The “fence” obtained in this way
is, in general, discontinuous at τ = t. Its shadow on the wall (τ, f) is equal to the classical
definite integral (1.14). The shadow on the wall (g, f) consists, in general, of the two
areas, which may overlap depending on the values of the coefficients c and d.

1.3 Two kinds of time – I

The geometric interpretation of fractional integration, given in the previous sections,
is substantially based on adding the third dimension (for gt(τ)) to the classical pair τ ,
f(τ). If we consider τ as time, then g(τ) can be interpreted just as a “deformed” time
scale. What could be the meaning of having – and using – two time axes? To answer
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this question, let us recall some facts of the history of the development of the notion of
time.

That were contributions of Barrows and Newton to the development of mathematics and
physics in the XVII century which led to the appearance of the “mathematical time”,
which is postulated to “flow equably” and which is usually depicted as a semi-infinite
straight line [26].

Newton himself postulated [17]:

“Absolute, true and mathematical time of itself, and from its own nature,
flows equably without relation to anything external.”

Such a postulate was absolutely necessary for developing Newton’s differential calculus
and applying it to problems of mechanics [26]:

“The outstanding mathematical achievement associated with the geometriza-
tion of time was, of course, the invention of the calculus of fluxions by New-
ton.”

“Mathematically, Newton seems to have found support for his belief in
absolute time by the need, in principle, for an ideal rate-measurer.”

The invention of differential and integral calculus and today’s use of them is the strongest
reason for continuing using homogeneous equably flowing time.

Time is often depicted using the time axis, and the geometrically equal intervals of the
time axis are considered as corresponding to equal time intervals (Fig. 1.6).

This assumption, however, cannot be neither proved nor rejected by experiment. Two
lengths of geometric intervals can be measured and compared, since they are available
for measurement simultaneously, at the same time (or, more precisely, at the same time
and at the same place). Two time intervals can never be compared, because they are
available to us for measurement (or for observation) only sequentially.

Indeed, how do we measure time intervals? Only by observing some processes, which we
consider as regularly repeated. G. Clemence wrote [7]:
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“The measurement of time is essentially a process of counting. Any recurring
phenomenon whatever, the occurences of which can be counted, is in fact a
measure of time.”

Clocks, including atomic clocks, repeat their “ticks”, and we simply count those ticks,
calling them hours, minutes, seconds, milliseconds, etc. But we are not able to verify
if the absolute time which elapsed between, say, the fifth and the sixth tick (the sixth
“second”) is exactly the same as the time, which elapsed between the sixth and the
seventh tick (the seventh “second”). This possible inhomogeneity of the time scale is
illustrated in Fig. 1.7.

The fact that time measurement as a process of counting of repeating discrete events
does not really exclude inhomogeneity of time, has been nicely mentioned by L. Carroll
in Alice’s Adventures in Wonderland [6, Chap. 7]:

“. . . I know I have to beat time when I learn music.”
“Ah! That accounts for it,” said the Hatter. “He [Time] won’t stand

beating. Now, if you only kept on good terms with him, he’d do almost
anything you liked to do with the clock. . . ”

Figures 1.6 and 1.7 show those “clock ticks”, which we can register, only symbolically.
One can interpret them as if there exists some absolute, or cosmic, inhomogeneous time
axis, to which we can compare individual homogeneous time, represented by some “clock
ticks”. Our picture of the individual homogeneous time has the form shown in Fig. 1.6.
The cosmic time may be not necessarily flowing equably, like that shown in Fig. 1.7.

To illustrate the idea, let us consider the following situation. Suppose person N has
two devices: one is a speedometer, and another one is the clock, which is slowing down,
so the interval between the two subsequent ticks is double comparing to the interval
between the previous ticks (see Fig. 1.7). Person N reads the velocity values indicated
by the speedometer at each encountered “second”, without knowing that the clock is, in
fact, slowing down.

Using these two series of data, namely the recorded sequence of values of speed, and the
sequence of the counted “seconds”, person N can estimate the distance which he has
passed.

For simplicity, let us suppose that the first “second” of the time shown by the clocks
is equal to the absolute time “second”. The results of observations in this hypothetical
experiment are given in Table 1.

Person N will compute the distance he has passed as

SN = 10 · 1 + 11 · 1 + 12 · 1 + 13 · 1 + 12 · 1 + 11 · 1 + 10 · 1 = 79.

However, if there would be an independent observer O, knowing about the slowing-down
clock, then such an observer would obtain a notably different result for the distance
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Table 1.1: Recording speed using slowing-down clocks

Person N Recorded values Observer O
individual of velocity [m/s] absolute (cosmic)
“seconds” “seconds”

0 10 0
1 11 1
2 12 3
3 13 7
4 12 15
5 11 31
6 10 63
7 9 127

passed by person N:

SO = 10 · 1 + 11 · 2 + 12 · 4 + 13 · 8 + 12 · 16 + 11 · 32 + 10 · 64 = 1368.

Below we use this idea for giving a new mechanical interpretation of the Stieltjes inte-
gral.

1.4 Physical interpretation of
the Stieltjes integral

Imagine a car equipped with two devices for measurements: the speedometer recording
the velocity v(τ), and the clock which should show the time τ . The clock, however,
shows the time incorrectly; let us suppose that the relationship between the wrong time
τ , which is shown by the clock and which the driver considers as the correct time, on
one hand, and the true time T , on the other, is described by the function T = g(τ). This
means that where the driver “measures” the time interval dτ , the real time interval is
given by dT = dg(τ).

The driver A, who do not know about wrong operation of the clock, will compute the
passed distance as the classical integral:

SA(t) =

t∫

0

v(τ)dτ . (1.16)

However, the observer O knowing about the wrong clock and having the function g(τ),
which restores the correct values of time from the driver’s wrong time τ , will compute
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the really passed distance as

SO(t) =

t∫

0

v(τ)dg(τ). (1.17)

This example shows that the Stieltjes integral (1.17) can be interpreted as the real
distance passed by a moving object, for which we have recorded correct values of speed
and incorrect values of time; the relationship between the wrongly recorded time τ and
the correct time T is given by a known function T = g(τ).

1.5 Physical interpretation of fractional integration: Shad-
ows of the past

Now let us consider the left-sided Riemann–Liouville fractional integral

SO(t) =

t∫

0

v(τ)dgt(τ) = 0I
α
t v(t), (1.18)

where gt(τ) is given by (1.3).

The fractional integral SO(t) of the function v(τ) can be interpreted as the real distance
passed by a moving object, for which we have recorded the local values of its speed v(τ)
(individual speed) and the local values of its time τ (individual time); the relationship
between the locally recorded time τ (which is considered as flowing equably) and the
cosmic time (which flows non-equably) is given by a known function gt(τ).

The function gt(τ) describes the inhomogeneous time scale, which depends not only on
τ , but also on the parameter t representing the last measured value of the individual time
of the moving object. When t changes, the entire preceding cosmic time interval changes
as well. This is in agreement with the current views in physics. Indeed, B. N. Ivanov [12,
p. 33] mentioned that time intervals depend on gravitational fields. Similarly, S. Hawking
[11, p. 32–33] wrote that:

“. . . time should appear to run slower near a massive body like the earth.”
[. . . ]

“. . . there is no unique absolute time, but instead each individual has his
own personal measure of time that depends on where he is and how he is
moving.”

When a moving body changes its position in space–time, the gravitational field in the
entire space–time also changes due to this movement. As a consequence, the cosmic
time interval, which corresponds to the history of the movement of the moving object,
changes. This affects the calculation (using formula (1.18)) of the real distance SO(t)
passed by such a moving object.
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In other words, the left-sided Riemann–Liouville fractional integral of the individual
speed v(τ) of a moving object, for which the relationship between its individual time τ
and the cosmic time T at each individual time instance t is given by the known function
T = gt(τ) described by the equation (1.3), represents the real distance SO(t) passed by
that object.

1.6 Physical interpretation of the Riemann-Liouville
fractional derivative

On the other hand, we can use the properties of fractional differentiation and integration
[20, 24] and express v(t) from the equation (1.18) as a left-sided Riemann–Liouville
fractional derivative of SO(t):

v(t) = 0D
α
t SO(t) (1.19)

where 0D
α
t denotes the Riemann–Liouville fractional derivative [20, 24], which is for

0 < α < 1 defined by

0D
α
t f(t) =

1

Γ(1− α)

d

dt

t∫

0

f(τ)dτ

(t− τ)α
. (1.20)

This shows that the left-sided Riemann–Liouville fractional derivative of the real distance
SO(t) passed by a moving object, for which the relationship between its individual time τ
and the cosmic time T at each individual time instance t is given by the known function
T = gt(τ) described by equation (1.3), is equal to the individual speed v(τ) of that
object.

On the other hand, we can differentiate the relationship (1.18) with respect to the cosmic
time variable t, which gives the relationship between the velocity vO(t) = S′O(t) of the
movement from the viewpoint of the independent observer O and the individual velocity
v(t):

vO(t) =
d

dt
0I
α
t v(t) = 0D

1−α
t v(t), (1.21)

Therefore, the (1− α)-th–order Riemann–Liouville derivative of the individual velocity
v(t) is equal to the velocity vO(t) from the viewpoint of the independent observer, if the
individual time τ and the cosmic time T are related by the function T = gt(τ) described
by equation (1.3). For α = 1, when there is no dynamic deformation of the time scale,
both velocities coincide: vO(t) = v(t).
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1.7 Physical interpretation of the Caputo
fractional derivative

Applying fractional integration of order β = 1−α to both parts of the relationship (1.21)
gives:

v(t) = 0I
1−α
t vO(t) = 0I

1−α
t S′O(t) = C

0D
α
t SO(t), (1.22)

where C
0D

α
t denotes the Caputo fractional derivative [4, 5, 20], which is for 0 < α < 1

defined by

C
0D

α
t f(t) =

1

Γ(1− α)

t∫

0

f ′(τ)dτ

(t− τ)α
. (1.23)

The relationship (1.22) is similar to (1.19). Therefore, the Caputo fractional derivative
has the same physical interpretation as the Riemann–Liouville fractional derivative (see
Section 1.6). This coincidence becomes more obvious, if we recall [20] that if f(0) = 0,
then the Riemann–Liouville derivative and the Caputo derivative of order α (0 < α < 1),
coincide: C

0 D
α
t f(t) = 0D

α
t f(t).

1.8 Two kinds of time – II

The suggested physical interpretation of fractional integration and fractional differentia-
tion is based on using two kinds of time: the cosmic time and the individual time.

As mentioned above, due to the history of the development of mathematics and physics,
we are taught to think about the time, in fact, geometrically. The real roots of this go
even far back to Euclid [26]:

“Euclid considered space as the primary concept of science and relegated
time to poor second.”

The entire integral and differential calculus is based on using mathematical (homoge-
neous, equably flowing) time. There is no chance to change this state, and there is
nothing to suggest instead of the classical calculus. Moreover, there is probably even
no need for this. We can just realize that the classical calculus provides tools for de-
scribing the dynamic properties of the cosmic time, which – according to physicists – is
inhomogeneous (flowing non-equably). Indeed [11, p. 33–34],

“The old idea of an essentually unchanging universe that could have existed,
and could continue to exist, forever was replaced by the notion of a dynamic,
expanding universe that seemed to have begun a finite time ago. . . ”

Clearly, the expansion of the universe implies that neither spatial scale nor time scale
remains homogeneous; they both are dynamic. For describing the inhomogeneous time,
the ideal homogeneous time scale can be used. This approach is not new; it has already
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been used in the theory of relativity for describing shortening of time intervals. This
means that in fact two time scales are considered simultaneously: the ideal, equably
flowing homogeneous time, and the cosmic (inhomogeneous) time. The change of scale
of the cosmic time is described using the homogeneous time scale as a reference scale. In
other words, the homogeneous time scale is just an ideal notion, which is necessary for
developing mathematical models describing inhomogeneous cosmic time and its change.
In this respect we can, without discussing other views on this subject, recall the remark
made by A. Daigneault and A. Sangalli in their essay [8] about I. E. Segal and his two-
time cosmology (“chronometric cosmology”, or CC) [25] – note that “perhaps!”:

“According to CC, Einstein’s model is the correct one to understand the
universe as a whole (i.e., global space–time), except that there are two kinds
of time: a cosmic or Einstein’s time t, and a local or Minkowski’s time x0,
which is (perhaps!) the time measured by existing techniques. [. . . ] Simply
put, Einstein’s cosmic time is the “real” one, whereas Minkowski’s time is
only an approximation of t.”

So, the ideal model of equably flowing homogeneous time can be considered as a rough
approximation of the cosmic time.

1.9 Geometric and physical interpretation
of the Volterra convolution integral

It should be mentioned that we can also provide a geometric and physical interpretation
for more general integrals.

The Riemann–Liouville fractional integral is a particular case of convolution integrals of
the Volterra type:

K ∗ f(t) =

t∫

0

f(τ)k(t− τ)dτ (1.24)

Assuming that k(t) = K ′(t), we can write this integral in the form

K ∗ f(t) =

t∫

0

f(τ)dqt(τ), (1.25)

qt(τ) = K(t)−K(t− τ). (1.26)

The geometric and physical interpretation of the Volterra convolution integral is then
similar to the suggested interpretations for fractional integrals. The function qt(τ) deter-
mines the changing shape of the “live fence” (in the case of the geometric interpretation,
see Figs. 1.1 and 1.2) and the relationship between the individual time and the cosmic
time of a moving object (in the case of the physical interpretation).
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1.10 Chapter summary

Possible geometric and physical interpretations of fractional-order operators have been
presented in this chapter. They are based on using two time axes – one is idea math-
ematical axis, and the other is a “live” and changing axis. Fractional-order operators
then have interpretations in the form of some dynamic shape (in the case of geometric
interpretation) and of some past history of the process that is continuously re-weighted
(in the case of physical interpretation).
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Chapter 2

Physical interpretation of initial
conditions for fractional
differential equations with
Riemann-Liouville fractional
derivatives

2.1 Introduction

Many physical phenomena lead to their description in terms of non integer order differen-
tial equations. Formulations of non integer order derivatives, generally called fractional
derivatives, fall into two main classes: Riemann-Liouville derivatives and Grünwald-
Letnikov derivatives, on one hand, defined as (Podlubny 1999, Samko et al. 1993)

0D
α
t f(t) =

1

Γ(n− α)

(
d

dt

)n t∫

0

f(τ) dτ

(t− τ)α−n+1
, (2.1)

or the Caputo derivative on the other, defined as (Caputo and Mainardi 1971)

C
0 D

α
t f(t) =

1

Γ(n− α)

t∫

0

f (n)(τ) dτ

(t− τ)α−n+1
, (2.2)

where n− 1 ≤ α < n.

In this article we deal only with the Riemann-Liouville fractional derivatives. Frac-
tional differential equations in terms of the Riemann-Liouville derivatives require initial

26
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conditions expressed in terms of initial values of fractional derivatives of the unknown
function (Podlubny 1999, Samko et al. 1993), like, for example, in the following initial
value problem (where n− 1 < α < n):

0D
α
t f(t) + af(t) = h(t); (t > 0) (2.3)

[
0D

α−k
t f(t)

]
t→0

= bk, (k = 1, 2, . . . , n). (2.4)

On the contrary, initial conditions for the Caputo derivatives are expressed in terms of
initial values of integer order derivatives. It is known that for zero initial conditions the
Riemann-Liouville, Grünwald-Letnikov and Caputo fractional derivatives coincide (Pod-
lubny 1999). This allows a numerical solution of initial value problems for differential
equations of non integer order independently of the chosen definition of the fractional
derivative. For this reason, many authors either resort to Caputo derivatives, or use
the Riemann-Liouville derivatives but avoid the problem of initial values of fractional
derivatives by treating only the case of zero initial conditions.

It is frequently stated that the physical meaning of initial conditions expressed in terms of
fractional derivatives is unclear or even non existent. The old and ubiquitous requirement
for physical interpretation of such initial conditions was most clearly formulated recently
by Diethelm et al. (2005):

“A typical feature of differential equations (both classical and fractional)
is the need to specify additional conditions in order to produce a unique
solution. For the case of Caputo FDEs, these additional conditions are just
the static initial conditions . . . , which are akin to those of classical ODEs,
and are therefore familiar to us. In contrast, for Riemann-Liouville FDEs,
these additional conditions constitute certain fractional derivatives (and/or
integrals) of the unknown solution at the initial point x = 0 . . . , which are
functions of x. These initial conditions are not physical ; furthermore, it is
not clear how such quantities are to be measured from experiment, say, so
that they can be appropriately assigned in an analysis.”

(Emphasis has been added). This quotation highlights the utmost importance of the in-
terpretation of initial conditions in terms of fractional derivatives for further applications
in various fields of science. The physical and geometric interpretations of operations of
fractional integration and differentiation were suggested recently by Podlubny (2002).
However, the problem of interpretation of initial conditions still remained open.

In this chapter we shall show that initial conditions for fractional differential equations
with Riemann-Liouville derivatives expressed in terms of fractional derivatives have phys-
ical meaning, and that the corresponding quantities can be obtained from measurements.
We shall also demonstrate that in many instances of practical significance zero initial
conditions, which are used so frequently in practice, appear in a natural way.
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2.2 Number of initial conditions, past history and mem-
ory

When a physical process can be described in terms of a differential equation of inte-
ger order n, it is well known that n conditions are required to solve the system. In
this chapter only initial conditions are considered. It is also known (Podlubny 1999,
Samko et al. 1993) that fractional differential equations of order α require α∗ initial
conditions, where α∗ is the lowest integer greater than α. This means that if α < 1 as
is the case in viscoelasticity when inertial effects are negligible, a single initial condi-
tion is sufficient. However, one of the reasons for the success encountered in describing
viscoelasticity by means of differential equations of non integer order is their ability to
describe real behaviour, including memory effects such as are observed in polymers, us-
ing only a restricted number of material parameters. Such memory effects may continue
to affect the material response long after the cause has disappeared, as observed in stress
relaxation after a non monotonous loading programme (Heymans and Kitagawa 2004).
In such a case a single initial condition would appear insufficient to predict material
response.

Here we shall consider only the response of a system starting at t = 0 from a state of
absolute rest. As a further simplification, we shall consider only response to ideal loading
programs, such as step or impulse response. The effects of a finite loading time, of the
details of the loading program, and of past history will be accounted for separately in a
sequel.

It has been shown (Beris and Edwards 1993) that thermodynamically valid constitu-
tive equations for viscoelasticity are completely equivalent to analog models containing
only elements (springs and dashpots) with positive coefficients. A suitable hierarchical
arrangement of springs and dashpots gives rise to spring-pot behaviour (described be-
low), either exactly at all timescales for an infinite tree (Heymans and Bauwens 1994),
or in the long-term (or low-frequency) limit for an infinite ladder or infinite Sierpinski
gasket (Heymans and Bauwens 1994, Schiessel and Blumen 1993, 1995). In the latter
case short-term behaviour is similar to a Maxwell model with one element replaced by
a spring-pot. Therefore the equivalence demonstrated by Beris and Edwards can be
generalized to models including spring-pots (Heymans 1996), hence discussion here will
be limited to such models.

2.3 Spring-pot model

We shall start with a spring-pot alone, which is a linear viscoelastic element whose
behaviour is intermediate between that of an elastic element (spring) and a viscous
element (dashpot). The term “spring-pot” was introduced by Koeller (1984), although
the concept of an element with intermediate properties had been introduced some time
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earlier. The constitutive equation of a spring-pot is:

σ(t) = K 0D
α
t ε(t) or ε(t) =

1

K
0D
−α
t σ(t) (2.5)

where σ is stress, ε is strain and K is the model constant. The spring-pot is the vis-
coelastic version of Westerlund’s “simplest model” (Westerlund 2002). If α = 0 the
element is linear elastic (Hookean spring) whereas if α = 1 it is purely viscous (Newto-
nian dashpot). Insight can be gained from the response of a spring-pot in a few simple
cases, using the general relationship (Podlubny 1999, Samko et al. 1993)

0D
α
t (atp) = a

Γ(1 + p)

Γ(1 + p− α)
tp−α. (2.6)

2.3.1 Creep or general finite load

In the case of creep, a stress step σ0 is applied at initial time t = 0. The strain response
is hence ε(t) = (σ0/KΓ(1 + α))tα. The initial value of the strain vanishes, i.e. there is
no instantaneous (elastic) strain, only an anelastic (retarded) response. However, the
first ordinary derivative of strain is unbounded, so that a finite though undefined strain
can be reached in an arbitrarily small time interval.

The change of ε(t) is described by the fractional differential equation

0D
α
t ε(t) =

σ0

K
(2.7)

In accordance with the theory of fractional differential equations in terms of Riemann-
Liouville derivatives, an initial condition involving 0D

α−1
t ε(t) is required. This condition

can be found by taking the first-order integral of the constitutive equation as
[

0D
α−1
t ε(t)

]
t→0

=
[

0D
−1
t (σ0/K)

]
t→0

.

In the case under consideration stress is finite at all times, hence[
0D
−1
t σ0

]
t→0

= 0, which leads to zero initial condition for 0D
α−1
t ε(t), namely

[
0D

α−1
t ε(t)

]
t→0

= 0. (2.8)

The same considerations apply to a general finite load σ(t). In the latter case the
equation to be solved is

0D
α
t ε(t) =

σ(t)

K
, (2.9)

and the initial condition to be attached to this equation is the zero initial condition
(2.8).
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2.3.2 Stress relaxation or general deformation

The stress response to a strain step ε0 is σ(t) = (ε0K/Γ(1 − α))t−α. The initial stress
is unbounded reflecting the fact that a spring-pot (just like a dashpot) cannot respond
immediately to a bounded stress: it has an infinite initial modulus or a vanishing ini-
tial compliance. However, relaxation to a finite though undefined stress occurs in an
arbitrarily small time interval.

The change of σ(t) is described by the fractional differential equation

0D
−α
t σ(t) = Kε0. (2.10)

From the known value of ε0 we can obtain the initial value (as t approaches zero) of

0D
−α
t σ(t). Clearly, if 0D

−α
t σ(t) is to be finite although it is defined over a vanishingly

small time interval, σ(t) must be unbounded. On the contrary, the initial value of

0D
−α
t σ(t) is well defined and finite, and that of 0D

−α−1
t σ(t) is zero. Thus, contrary

to the idea expressed by some authors (e.g., Glöckle and Nonnenmacher 1991), initial
value problems expressed in terms of fractional integrals are not better posed than those
expressed in terms of fractional derivatives.

If strain increases linearly with time, stress increases as t1−α. Stress is bounded, but the
initial values of its integer order derivatives are unbounded. The known strain rate allows
us to define the initial value of 0D

1−α
t σ(t). In fact, in this case, zero initial conditions

are found both for 0D
−α
t σ(t) and 0D

−α−1
t σ(t).

For any general finite strain ε(t), following the same reasoning, again zero initial condi-
tions are found.

In all three examples given here, initial conditions expressed in terms of fractional deriva-
tives or integrals arise naturally when taking measurable quantities into account.

2.3.3 Impulse response

The impulse response is seldom used in viscoelasticity except as a mathematical conve-
nience, because it is even more problematic to apply a homogeneous impulse of stress or
strain on a sample than it is to apply a step. However, we shall investigate the impulse
response following the same reasoning as for the step response above.

Consider an impulse of stress defined as Bδ(t) applied to the spring-pot at time t = 0.
After that, the stress remains zero. The strain response is ε(t) = (B/KΓ(α))tα−1. The
initial stress singularity gives rise to a lower-order strain singularity, since a spring-pot
cannot deform immediately.

The strain ε(t) for t > 0 is the solution to the fractional differential equation

0D
α
t ε(t) = 0. (2.11)
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In accordance with the theory of fractional differential equations with Riemann-Liouville

derivatives, an initial condition involving
[

0D
α−1
t ε(t)

]
t→0

is required. This can be found

through integration of the constitutive equation, as

[
0D

α−1
t ε(t)

]
t→0

=
[

0D
−1
t σ(t)/K

]
t→0

= B/K,

which gives the following initial condition to equation (2.11):

[
0D

α−1
t ε(t)

]
t→0

= B/K. (2.12)

In this problem in terms of Riemann-Liouville derivatives B is the initial impulse of
stress σ(t), ε(t) is the strain after application of this impulse, and the known impulse of
stress yields a non-zero initial condition (2.12) involving a fractional derivative of strain.
This fractional derivative is non zero, well defined, and bounded. Note that both strain
and its integer-order derivatives are unbounded, and its first order integral is zero, so
that a meaningful initial condition expressing the loading conditions cannot be obtained
using integral-order derivatives.

The physically unrealistic stress response to a prescribed strain impulse will not be
considered here. In fact, the analytical solution has a strong t−(1+α) divergence, reflecting
the fact that a strain impulse cannot be applied to a spring-pot.

2.4 The key: look for inseparable twins

Now, after introducing the above simple example, let us formulate our general approach
to interpretation of initial conditions involving the Riemann-Liouville fractional deriva-
tives.

In a general case, when we consider some fractional differential equation for, say, U(t),
we have to consider also some function V (t), for which some dual relation exists between
U(t) and V (t). For example, in viscoelasticity we have to consider the pair of stress
σ(t) and strain ε(t); in electrical circuits the pair of current i(t) and voltage v(t); in
heat conduction the pair of the temperature difference T (t) and the heat flux q(t);
etc. Functions U(t) and V (t) are normally related by some basic physical law for the
particular field of science. In each scientific field there are such pairs of functions like
the aforementioned, which are as inseparable as Siamese twins: the left-hand side of the
initial condition involves one of them, whereas the evaluation of the right-hand side is
related to the other.

This concept is not restricted to the spring-pot treated above, but is further applied in
the subsequent sections to more elaborate models of viscoelastic behaviour. Indeed, a
spring-pot is a particularly crude model, which has several unrealistic and unphysical
characteristics. As pointed out above, it has a vanishing initial compliance or an infinite
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initial modulus. Viscoelastic solids, on the contrary, have a well-defined instantaneous
modulus. (Note that an unbounded initial modulus is no more of a problem when
describing a viscoelastic fluid than it is when describing Newtonian viscosity: if a step
strain is applied to a dashpot, the initial stress is also unbounded). At long times
there is no limit to anelastic strain of a spring-pot: creep continues indefinitely. Also,
stress relaxes to vanishingly small values. The increase of stress in constant strain-rate
conditions means that if attempting to describe a viscoelastic fluid, steady state flow
is never attained. When describing a viscoelastic solid, again we find an unbounded
modulus at t = 0. In spite of these limitations, the spring-pot can give an approximate
description of polymer viscoelasticity in the intermediate time range. Several slightly
more elaborate models, which alleviate some oversimplifications of a single spring-pot,
will be investigated below.

2.5 The fractional order Voigt model

The fractional Voigt model (a spring and a spring-pot in parallel) is nowadays generally
understood as a long-term approximation to the fractional Zener model and it might seem
irrelevant to express concern over initial value problems for the Voigt model. However,
as the purpose of this note is mainly to examine how initial conditions endowed with
physical meaning may be expressed in systems whose constitutive equations contain
fractional derivatives, we shall continue to examine the fractional Voigt model.

The constitutive equation of this model is

σ(t) = Eε(t) +K 0D
α
t ε(t). (2.13)

The Voigt element or associations thereof are considered in viscoelasticity modelling to
be appropriate to obtain the strain response to a prescribed stress program, so we shall
investigate only such cases here.

Assume a stress impulse Bδ(t) is applied to a Voigt element at time t = 0. Then the
fractional order equation we need to solve for ε(t) (t > 0) is

Eε(t) +K 0D
α
t ε(t) = 0. (2.14)

In agreement with the theory of fractional differential equations in terms of Riemann-
Liouville derivatives, we need an initial condition, which will involve the value of 0D

α−1
t ε(t)

for t → 0. This condition can be obtained by integration of the constitutive equation
as [

E 0D
−1
t ε(t) +K 0D

α−1
t ε(t) = 0D

−1
t σ(t)

]
t→0

. (2.15)

The limit of the right hand side is the magnitude B of the stress impulse. On physical
grounds, the spring-pot cannot deform instantaneously under a finite stress, and, as is
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the case for a spring-pot alone, any singularity of ε(t) must be weaker than that of the
stress impulse, thus [

0D
−1
t ε(t)

]
t→0

= 0.

This can also be found from examination of the behaviour of the left hand side of the
relationship (2.15): if

[
0D
−1
t ε(t)

]
t→0

is non zero, then
[

0D
α−1
t ε(t)

]
t→0

is unbounded

and equation (2.15) cannot be fulfilled. Hence the initial condition finally takes on the
form of [

K 0D
α−1
t ε(t)

]
t→0

= B. (2.16)

This condition expresses the initial value of the fractional derivative of strain, 0D
α−1
t ε(t),

in terms of the stress impulse. We see that the initial condition is obtained expressing a
fractional derivative of the unknown strain in terms of a measurable, physically mean-
ingful value of its “inseparable Siamese twin”– the stress. The obtained initial condition
is, in fact, identical to the initial condition of the spring-pot alone. This reflects the
known fact that the spring in the Voigt model only affects long-term behaviour.

Now let us consider creep, i. e. the response to a stress step σ0 applied at t = 0. The
equation to be solved for the strain ε(t) is

Eε(t) +K 0D
α
t ε(t) = σ0, (2.17)

and the initial condition for (2.17) can be found from

[
E 0D

−1
t ε(t) +K 0D

α−1
t ε(t) = 0D

−1
t σ(t)

]
t→0

,

where the limit of the right hand side is zero. A bounded stress can produce only a
bounded strain, so the limit of the first-order ordinary integral of strain in the left hand
side is also zero. Thus the initial condition has the form:

[
0D

α−1
t ε(t)

]
t→0

= 0. (2.18)

Once more, knowledge of a measurable quantity (σ0) leads to an initial condition ex-
pressed in terms of a fractional order derivative of the unknown (ε(t)), its inseparable
Siamese twin.

The case of a general finite stress program is similar to that of creep. The equation to
be solved is now

Eε(t) +K 0D
α
t ε(t) = σ(t), (2.19)

and the initial condition is identical to the condition (2.18) obtained in creep.
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2.6 The fractional order Maxwell model

To keep to a simple model while describing realistic behaviour for a viscoelastic solid, a
spring expressing instantaneous elasticity must be associated in series with the spring-
pot. This eliminates the unbounded initial stress in description of relaxation. The
Maxwell element or associations thereof are considered in viscoelasticity modelling to
be appropriate to obtain the stress response to a prescribed strain program, so we shall
investigate only such cases here.

The constitutive equation of the Maxwell model is

ε(t) =
1

E
σ(t) +

1

K
( 0D

−α
t σ(t)),

or
1

E
0D

α
t σ(t) +

1

K
σ(t) = 0D

α
t ε(t). (2.20)

In stress relaxation, a step strain ε0 is applied at t = 0. Then the equation to be solved
is

1

E
0D

α
t σ(t) +

1

K
σ(t) =

ε0t
−α

Γ(1− α)
. (2.21)

An initial condition is required, involving the value of
[

0D
α−1
t σ(t)

]
t→0

. Integrating the

constitutive equation (2.20) and considering the limit as t approaches zero, we have
[

1

E
0D

α−1
t σ(t) +

1

K
0D
−1
t σ(t) = 0D

α−1
t ε(t)

]

t→0
. (2.22)

Since strain remains bounded during loading, and α < 1, the right hand side inside
brackets is bounded and vanishes when t → 0. Since the left hand side is a linear
combination of positive functions with positive coefficients, it can only vanish if each
term vanishes. This means that stress remains bounded during loading, and hence that
we obtain the following initial condition:

[
0D

α−1
t σ(t)

]
t→0

= 0. (2.23)

Here again we observe that the initial condition on the unknown stress arises naturally
from its Siamese twin, the known strain.

Now we shall consider the strain impulse response. A strain impulse of magnitude Aδ(t)
is applied at time t=0. Thereafter, the equation to be solved is

1

E
σ(t) +

1

K
0D
−α
t σ(t) = 0. (2.24)

The required initial condition is obtained as above by integrating the constitutive equa-
tion (2.20) and considering the limit as t approaches zero:
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[
1

E
0D
−1
t σ(t) +

1

K
0D
−α−1
t σ(t) = 0D

−1
t ε(t)

]

t→0
. (2.25)

The limit of the right hand side of (2.25) is A. Hence the limit of the left hand side must
also be bounded. This means that the limit of the first-order integral of stress must be
bounded, and the α+ 1 integral must vanish, and the initial condition is finally

[
1

E
0D
−1
t σ(t)

]

t→0
= A. (2.26)

The singularity in the stress response to a strain impulse is now of the same order as that
of the strain impulse itself: adding a spring in series with the spring-pot has weakened
the singularity.

The strain response to a stress impulse is identical to that of a spring-pot alone since
the impulse response of the spring vanishes.

2.7 The fractional order Zener model

Among the fractional order models of viscoelasticity considered in this article, the most
general is the Zener model. Its constitutive equation is

σ(t) + ν 0D
α
t σ(t) = λ ε(t) + µ 0D

α
t ε(t), (2.27)

where λ = E∞ is the long-term modulus, µ = K(E0−E∞)/E0, ν = µ/E0 and E0 is the
instantaneous modulus.

Let us first investigate the response to a stress impulse Bδ(t) applied to the Zener element
at time t = 0. Then the fractional differential equation we need to solve for ε(t) (t > 0)
is:

λε(t) + µ 0D
α
t ε(t) = 0. (2.28)

In accordance with the theory of fractional differential equations, we need an initial
condition involving the initial value of 0D

α−1
t ε(t). Integration of the constitutive equation

gives:

0D
−1
t σ(t) + ν 0D

α−1
t σ(t) = λ 0D

−1
t ε(t) + µ 0D

α−1
t ε(t). (2.29)

The initial condition can be found by considering equation (2.29) as t→ 0:
[

0D
−1
t σ(t) + ν 0D

α−1
t σ(t) = λ 0D

−1
t ε(t) + µ 0D

α−1
t ε(t)

]
t→0

. (2.30)

Using considerations similar to those in case of the Voigt model under stress impulse,
we obtain the initial condition in the form:

[
µ 0D

α−1
t ε(t)

]
t↔0

= B (2.31)
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As in case of the Voigt model, this condition gives the initial value of the fractional deriva-
tive of unknown strain, 0D

α−1
t ε(t), in terms of its “inseparable twin” – the stress.

The right and left hand sides of equations (2.28) and (2.30) are formally identical, hence
following the same reasoning as above the response to a strain impulse Aδ(t) applied to
the Zener element at time t = 0 will be the solution to the equation

σ(t) + ν 0D
α
t σ(t) = 0 (2.32)

with the initial condition [
ν 0D

α−1
t σ(t)

]
t↔0

= A (2.33)

This formal equivalence between response to a stress or strain impulse reflects the well
known fact that the Zener model is the simplest model capable of describing response
to a stress or strain program equally well.

In case of creep, i.e. a step-stress σ(t) = σ0 for σ > 0, we have the equation for ε(t):

λε(t) + µ 0D
α
t ε(t) = σ0 + ν σ0

t−α

Γ(1− α)
. (2.34)

The initial condition can also be found by considering equation (2.29) as t→ 0.

Following a similar reasoning to that given above for the Maxwell model in stress relax-
ation, we find a zero initial condition to accompany equation (2.34):

[
0D

α−1
t ε(t)

]
t→0

= 0. (2.35)

This initial condition in terms of fractional derivative of ε(t) appeared from consideration
of its “inseparable twin” σ(t).

Similarly, for stress relaxation, ε(t) = ε0, we obtain the equation for σ(t):

σ(t) + ν 0D
α
t σ(t) = λε0 + µ ε0

t−α

Γ(1− α)
. (2.36)

The initial condition for the unknown stress σ(t),

[
0D

α−1
t σ(t)

]
t→0

= 0, (2.37)

appears naturally from consideration of the initial value of strain.

Let us now consider the case of general load σ(t) = σ∗(t). The equation to be solved for
ε(t) is

λε(t) + µ 0D
α
t ε(t) = σ∗(t) + ν 0D

α
t σ∗(t) (2.38)
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The corresponding initial condition can be obtained using the following procedure. Con-
sider some small t = a. Starting at t = 0, stress σ(t) must be recorded until t = a,
and based on the recorded values the left hand side of the relationship (2.29) must be
evaluated. The obtained quantity provides an approximation of the initial value for the
expression in the right hand side of (2.29).

In some cases it is possible to find the limit of such approximation as a→ 0. For example,
for a physically realisable continuous load σ∗(t) we obtain a zero initial condition in the
form: [

0D
α−1
t ε(t)

]
t→0

= 0. (2.39)

It is worth mentioning that this procedure amounts, in fact, to the same as measuring
the initial value of, for example, the first derivative in the case of classical differential
equations of integer order. From the examples given above, it can be seen that for any
physically realistic model, zero initial conditions will be found for a continuous loading
program or even in the case of a step discontinuity. Non-zero conditions will only be
found in the case of an impulse.

2.8 Chapter summary

Examples presented in this chapter demonstrate that it is possible to attribute physical
meaning to initial conditions expressed in terms of Riemann-Liouville fractional deriva-
tives.

To summarize, expressing initial conditions in terms of fractional derivatives of a function
U(t) is not a problem, because it does not require a direct experimental evaluation of
these fractional derivatives. Instead, one should consider its “inseparable twin” V (t)
related to U(t) via a basic physical law, and measure (or consider) its initial values.

It is worth noting that the only case where non zero initial conditions appeared in our
considerations, is the case of impulse response. In other cases (including the Zener model
under physically realisable load program), the initial conditions are zero, and in such
cases the use of the Riemann-Liouville derivatives, the Grünwald-Letnikov derivatives,
and the Caputo derivatives is equivalent.
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Chapter 3

Matrix approach for ordinary
fractional differential equations

3.1 Introduction

There are several well-known approaches to unification of notions of differentiation and
integration, and their extension to non-integer orders [13].

The approach, which is described in this chapter, unifies numerical differentiation of
integer order and n-fold integration, using so-called triangular strip matrices [1, 8, 14].
Applied to numerical solution of differential equations, it also unifies solution of ordi-
nary integer- and fractional-order differential equations, and fractional integral equa-
tions.

Triangular strip matrices already appeared in some studies on fractional integral equa-
tions [2, 3, 6, 7, 9, 10, 11], but until today their usefulness for approximating fractional
derivatives and solving fractional differential equations has not been recognized.

The general structure of this chapter is the following. First of all, triangular strip
matrices, and operations on them, are introduced. Then discrete forms of integer-order
differentiation and n-fold integration are considered using triangular strip matrices, and
a generalisation for the case of an arbitrary (non-integer) order of differentiation and
integration is presented. The advantages of the use of triangular strip matrices for
numerical solution of fractional integral and differential equations of some important
types are described and illustrated with four examples.

39
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3.2 Triangular strip matrices

In this and subsequent chapters we will deal with matrices of a specific structure, which
are called triangular strip matrices [14, p. 20], and which have been mentioned in [1, 8].
We will consider lower triangular strip matrices,

LN =




ω0 0 0 0 · · · 0
ω1 ω0 0 0 · · · 0
ω2 ω1 ω0 0 · · · 0
. . .

. . .
. . .

. . . · · · · · ·
ωN−1

. . . ω2 ω1 ω0 0

ωN ωN−1
. . . ω2 ω1 ω0




, (3.1)

and upper triangular strip matrices,

UN =




ω0 ω1 ω2
. . . ωN−1 ωN

0 ω0 ω1
. . .

. . . ωN−1

0 0 ω0
. . . ω2

. . .

0 0 0
. . . ω1 ω2

· · · · · · · · · · · · ω0 ω1

0 0 0 · · · 0 ω0




, (3.2)

A lower (upper) triangular strip matrix is completely described by its first column (row).
Because of this, it may be convenient in the future to use a compact notation of the
form

LN = ||ω0, ω1, . . . , ωN ||T ,
UN = ||ω0, ω1, . . . , ωN ||,

where || · ||T denotes matrix transposition. However, in this chapter we prefer to use full
matrix notation for clarity.

Obviously, if matrices C and D are both lower (upper) triangular strip matrices, then
they commute:

CD = DC (3.3)

Denoting
ΩN = LN − ω0E, ΨN = UN − ω0E, (3.4)

where E is the unit matrix, we can write

LN = ω0E + ΩN , UN = ω0E + ΨN (3.5)
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We can also consider (N + 1) × (N + 1) matrices E+
p , p = 1, . . . N , with ones on p-th

diagonal above the main diagonal and zeroes elsewhere, and matrices E−p , p = 1, . . . N ,
with ones on p-th diagonal below the main diagonal and zeroes elsewhere. We will also
denote E±0 ≡ E the unit matrix.

It can be shown that

E±p E
±
q =

{
E±p+q, (p+ q ≤ N),

O, (p+ q > N),
(3.6)

from which follows that for integer k

(E±p )k =

{
E±pk, (pk ≤ N),

O, (pk > N),
(E±1 )N+1 = O. (3.7)

Noting that

ΩN =
N∑

k=1

ωkE
−
k , ΨN =

N∑

k=1

ωkE
+
k , (3.8)

it can be shown that (N + 1)-th power of ΩN and of ΨN gives the zero matrix:

ΩN+1
N = O, ΨN+1

N = O. (3.9)

Using (3.9) it is easy to check that the inverse matrices (LN )−1 and (UN )−1 are given
by the following explicit expressions [5, p. 62]:

(LN )−1 = ω−1
0 E − ω−2

0 ΩN + ω−3
0 Ω2

N + . . .+ (−1)Nω−N−1
0 ΩN

N , (3.10)

(UN )−1 = ω−1
0 E − ω−2

0 ΨN + ω−3
0 Ψ2

N + . . .+ (−1)Nω−N−1
0 ΨN

N . (3.11)

There is a link between matrix polynomials and triangular strip matrices. Namely, if we
introduce the polynomial %N (z),

%N (z) = ω0 + ω1z + ω2z
2 + . . .+ ωNz

N , (3.12)

and take into account the relationship (3.7), then we can write:

%N (E−1 ) = ω0E + ω1E
−
1 + ω2(E−1 )2 + . . .+ ωN (E−1 )N = LN , (3.13)

%N (E+
1 ) = ω0E + ω1E

+
1 + ω2(E+

1 )2 + . . .+ ωN (E+
1 )N = UN . (3.14)

where LN and UN defined by relationships (3.1) and (3.2).

If we define the truncation operation, truncN (·), which truncates (in a general case) the
power series %(z),

%(z) =
∞∑

k=0

ωkz
k (3.15)
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to the polynomial %N (z),

truncN (%(z))
def
=

N∑

k=0

ωkz
k = %N (z), (3.16)

then we can consider the function %(z) as a generating series for the set of lower (or
upper) triangular matrices LN (or UN ), N = 1, 2, . . ..

We will need the following properties of the truncation operation:

truncN (γλ(z)) = γ truncN (λ(z)) , (3.17)

truncN (λ(z) + µ(z)) = truncN (λ(z)) + truncN (µ(z)) , (3.18)

truncN (λ(z)µ(z)) = truncN
(
truncN (λ(z)) truncN (µ(z))

)
. (3.19)

3.3 Operations with triangular strip matrices

Due to special structure of triangular strip matrices, operations with them, such as
addition, subtraction, multiplication, and inversion, can be expressed in the form of
operations with their generating series (3.15).

Let us consider two (N + 1) × (N + 1) lower triangular strip matrices: matrix AN
with elements ak, k = 0, 1, . . . , N in its first column, and matrix BN with elements bk,
k = 0, 1, . . . , N in its first column. Denoting λ(z) and µ(z) the generating series of AN
and BN respectively, and using the representation (3.13), we can write:

AN =
N∑

k=0

ak(E
−
1 )k = λN (E−1 ), BN =

N∑

k=0

bk(E
−
1 )k = µN (E−1 ), (3.20)

where λN (z) = truncN (λ(z)), µN = truncN (µ(z)), and therefore

AN ±BN =
N∑

k=0

(ak ± bk)(E−1 )k. (3.21)

In symbolic form, using the generating series λ(z) and µ(z) and the properties of trun-
cation operation (3.17) and (3.18), this can be written as

AN ±BN ←→ truncN (λ(z)± µ(z)) = λN (z)± µN (z) =

=
N∑

k=0

(ak ± bk)zk ←→
N∑

k=0

(ak ± bk)(E−1 )k. (3.22)

This means that the coefficient on k-th diagonal of the sum of two lower triangular strip
matrices is equal to the sum of k-th coefficients of the generating series of those matrices.
Therefore, summation of lower triangular strip matrices is equivalent to summation of
their respective generating series with a subsequent truncation.



CHAPTER 3. MATRIX APPROACH FOR ORDINARY FDES 43

Multiplication by a constant γ is simple:

γAN ←→ truncN (γλ(z)) = γλN (z) =
N∑

k=0

γakz
k ←→

N∑

k=0

γak(E
−
1 )k, (3.23)

and it is equivalent to multiplication of the generating series by γ followed by trunca-
tion.

Taking into account the property (3.7) of the matrix E−1 , we obtain the product of AN
and BN :

ANBN =

(
N∑

k=0

ak(E
−
1 )k

)(
N∑

k=0

bk(E
−
1 )k

)
(3.24)

=
N∑

k=0

(
k∑

i=0

aibk−i

)
(E−1 )k. (3.25)

Using the truncation operation, the product of the matrices AN and BN can also be
expressed in terms of their generating series:

ANBN ←→ truncN (λ(z)µ(z)) = truncN

( ∞∑

k=0

(
k∑

i=0

aibk−i

)
zk
)

=

=
N∑

k=0

(
k∑

i=0

aibk−i

)
zk ←→

N∑

k=0

(
k∑

i=0

aibk−i

)
(E−1 )k. (3.26)

In other words, the product of two lower triangular matrices AN and BN is equivalent
to the truncated product of their generating series.

The use of the generating series is especially convenient for inverting the lower triangular
strip matrices.

If AN is a lower triangular strip matrix with a generating function λ(z), then the gen-
erating function for the inverse matrix (AN )−1 is simply y(z) = λ−1(z). Indeed,

AN (AN )−1 ←→ truncN
(
λ(z)λ−1(z)

)
= 1←→ E. (3.27)

This means that the coefficients on the first column of the inverse matrix (AN )−1 are
the coefficients of the polynomial

yN (z) = truncN
(
λ−1(z)

)
, (3.28)

which is the truncation of the generating series for the inverse matrix. This method
of inversion of triangular strip matrices is even simpler than the formulas (3.10) and
(3.11).

All the above rules involving generating functions can also be used for upper triangular
strip matrices.
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3.4 Integer-order differentiation

Let us consider equidistant nodes with the step h: tk = kh, (k = 0, . . . , N), in the
interval [a, b], where t0 = a and tN = b.

3.4.1 Backward differences

For a function f(t), differentiable in [a, b], we can consider first-order approximation
of its derivative f ′(t) at the points tk, k = 1, . . . , N , using first-order backward differ-
ences:

f ′(tk) ≈
1

h
∇f(tk) =

1

h
(fk − fk−1) , k = 1, . . . , N. (3.29)

All N formulas (3.29) can be written simultaneously in the matrix form:




h−1 f0

h−1 ∇f(t1)
h−1 ∇f(t2)

...
h−1 ∇f(tN−1)
h−1 ∇f(tN )




=
1

h




1 0 0 0 · · · 0
−1 1 0 0 · · · 0

0 −1 1 0 · · · 0

· · · · · · · · · . . . · · · · · ·
0 · · · 0 −1 1 0
0 0 · · · 0 −1 1







f0

f1

f2
...

fN−1

fN




(3.30)

In the formula (3.30) the column vector of function values fk (k = 0, . . . , N) is multiplied
by the matrix

B1
N =

1

h




1 0 0 0 · · · 0
−1 1 0 0 · · · 0

0 −1 1 0 · · · 0

· · · · · · · · · . . . · · · · · ·
0 · · · 0 −1 1 0
0 0 · · · 0 −1 1




, (3.31)

and the result is the column vector of approximated values of f ′(tk), k = 1, . . . , N , with
the exception of the first element, depending on the value of the function f(t) at the
initial point, namely h−1f0 = h−1f(a). We can look at the matrix B1

N as at a discrete
analog of first-order differentiation. The generating function for the matrix B1

N is

β1(z) = h−1(1− z). (3.32)

Similarly, we can consider the approximation of the second-order derivative using second-
order backward differences:

f ′′(tk) ≈
1

h2
∇2f(tk) =

1

h2
(fk − 2fk−1 + fk−2) , k = 2, . . . , N, (3.33)
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which in the matrix form corresponds to the relationship




h−2 f0

h−2 (−2f0 + f1)
h−2 ∇2f(t2)

...
h−2 ∇2f(tN−1)
h−2 ∇2f(tN )




=
1

h2




1 0 0 0 · · · 0
−2 1 0 0 · · · 0

1 −2 1 0 · · · 0

· · · · · · · · · . . . · · · · · ·
· · · 0 1 −2 1 0

0 0 · · · 1 −2 1







f0

f1

f2
...

fN−1

fN




(3.34)

In the formula (3.34) the column vector of function values fk (k = 0, . . . , N) is multiplied
by the matrix

B2
N =

1

h2




1 0 0 0 · · · 0
−2 1 0 0 · · · 0

1 −2 1 0 · · · 0

· · · · · · · · · . . . · · · · · ·
· · · 0 1 −2 1 0

0 0 · · · 1 −2 1




(3.35)

and the result is the column vector of approximations of f ′′(tk), k = 2, 3, . . . , N , with
the exception of the first two elements, namely h−2f0 and h−2(−2f0 + f1). We can look
at the matrix B2

N as at a discrete analog of second-order differentiation. The generating
function for the matrix B2

N is

β2(z) = h−2(1− 2z + z2) = h−2(1− z)2. (3.36)

Further, we can consider a matrix Bp
N , where p is a positive integer:

Bp
N =

1

hp




ω0 0 . . . 0 0 0 0 0

ω1 ω0 0 . . . 0 0 0 0

ω2 ω1 ω0 0 . . . 0 0 0

. . . . . . . . .
. . . . . . . . . 0 0

. . . . . . . . . . . .
. . . . . . . . . 0

. . . . . . . . . . . . . . .
. . . 0 . . .

0 . . . 0 ωp ωp−1 . . . ω0 0

0 0 . . . 0 ωp ωp−1 . . . ω0




(3.37)

ωj = (−1)j
(
p

j

)
, j = 0, 1, 2, . . . , p. (3.38)
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The matrix Bp
N is a discrete analog of differentiation of p-th order, if backward differences

of the p-th order are used. The generating function for the matrix Bp
N is

βp(z) = h−p(1− z)p. (3.39)

For the generating functions of the form βp(z) we have:

β2(z) = β1(z)β1(z)

βp(z) = β1(z) . . . β1(z)︸ ︷︷ ︸
p

βp+q(z) = βp(z)βq(z) = βq(z)βp(z),

from which in view of (3.26) follows that

B2
N = B1

N B1
N , (3.40)

Bp
N = B1

N B1
N . . . B

1
N︸ ︷︷ ︸

p

, (3.41)

Bp+q
N = Bp

N Bq
N = Bq

N Bp
N , (3.42)

where p and q are positive integers.

3.4.2 Forward differences

Similarly to the previous section, we obtain that the matrix F pN , where p is a positive
integer,

F pN =
1

hp




ω0 . . . ωp−1 ωp 0 . . . 0 0
0 ω0 . . . ωp−1 ωp 0 . . . 0

. . . 0
. . . . . . . . . . . . . . . . . .

0 . . . . . .
. . . . . . . . . . . . . . .

0 0 . . . . . .
. . . . . . . . . . . .

0 0 0 . . . 0 ω0 ω1 ω2

0 0 0 0 . . . 0 ω0 ω1

0 0 0 0 0 . . . 0 ω0




(3.43)

ωj = (−1)j
(
p

j

)
, j = 0, 1, 2, . . . , p. (3.44)

is a discrete analog of differentiation of p-th order, namely of (−1)pf (p)(t), if forward
differences of the p-th order are used. The generating function for F pN is the same as for
Bp
N : βp(z) = h−p(1− z)p.
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Since the generating functions are the same as in case of the matrices Bp
N , we have for

F pN the similar properties:

F 2
N = F 1

N F 1
N , (3.45)

F pN = F 1
N F 1

N . . . F
1
N︸ ︷︷ ︸

p

, (3.46)

F p+qN = F pN F qN = F qN F pN , (3.47)

where p and q are positive integers.

It also should be noted that transposition of the matrix Bp
N , representing the back-

ward difference operation, gives the matrix F pN , which corresponds to forward differenc-
ing: (

Bp
N

)T
= F pN ,

(
F pN

)T
= Bp

N . (3.48)

3.5 n-fold integration

Now let us turn to integration. To deal with operations, which are inverse to differentia-
tion, we have to consider definite integrals with one limit fixed and another moving.

3.5.1 Moving upper limit of integration

Let us take a function f(t), integrable in [a, b], and consider integrals with fixed lower
limit and moving upper limit:

g1(t) =

t∫

a

f(t)dt, (3.49)

for which we have g′1(t) = f(t) in (a, b).

Let us consider equidistant nodes with the step h: tk = kh, (k = 0, . . . , N), in the
interval [a, b], where t0 = a and tN = b. We can use the left rectangular quadrature rule
for approximating the integral (3.49) at the points tk, k = 1, . . . , N :

g1(tk) ≈ h
k−1∑

i=0

fi, k = 1, . . . , N. (3.50)

All N formulas (3.50) can be written simultaneously in the matrix form:



g1(t1)
g1(t2)
g1(t3)

...
g1(tN )

g1(tN + h)




= h




1 0 0 0 · · · 0
1 1 0 0 · · · 0
1 1 1 0 · · · 0

· · · · · · · · · . . . · · · · · ·
1 · · · 1 1 1 0
1 1 · · · 1 1 1







f0

f1

f2
...

fN−1

fN




(3.51)
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We see that the column vector of function values fk (k = 0, . . . , N) is multiplied by the
matrix

I1
N = h




1 0 0 0 · · · 0
1 1 0 0 · · · 0
1 1 1 0 · · · 0

· · · · · · · · · . . . · · · · · ·
1 · · · 1 1 1 0
1 1 · · · 1 1 1




, (3.52)

and the result is the column vector of approximated values of the integral (3.49), namely
g1(tk), k = 1, . . . , N , with the exception of the last element, which corresponds to the
node lying outside of the considered interval [a, b]. We can look at the matrix I1

N as at
a discrete analog of left rectangular quadrature rule for evaluating the integral (3.49).
The generating function for I1

N is

ϕ1(z) = h(1− z)−1. (3.53)

It must be noted here that the matrix I1
N is inverse to the matrix B1

N , which corresponds
to backward difference approximation of the first derivative. We have:

B1
NI

1
N = I1

NB
1
N ←→ truncN (β1(z)ϕ1(z)) = 1←→ E. (3.54)

Therefore, having one of these matrices, we can immediately obtain another by matrix
inversion.

Similarly, we can consider the two-fold integral with moving upper boundary:

g2(t) =

t∫

a

dt

t∫

a

f(t)dt, (3.55)

for which we have g′′2(t) = g′1(t) = f(t) in (a, b).

Using the left rectangular quadrature rule twice for approximating g2(tk) and taking
into account that g1(t0) = 0, we have:

g2(tk) = h
k−1∑

i=0

g1(ti) = h
k−1∑

i=1

g1(ti) = h
k−1∑

i=1

h
i−1∑

j=0

fj =

= h2
k−1∑

i=1

i−1∑

j=0

fj = h2
k−2∑

j=0

(k − j − 1) fj =

= h2
(
(k − 1)f0 + (k − 2)f1 + . . .+ 2fk−3 + fk−2

)
, (3.56)

k = 2, 3, . . . , N.
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The equations (3.56) can be written simultaneously in the matrix form:




g2(t2)
g2(t3)

...
g2(tN )

g2(tN + h)
g2(tN + 2h)




= h2




1 0 0 0 · · · 0
2 1 0 0 · · · 0

· · · · · · . . . · · · · · · · · ·
· · · 3 2 1 0 0
N · · · 3 2 1 0

N + 1 N · · · 3 2 1







f0

f1
...

fN−2

fN−1

fN




(3.57)

We see that the column vector of function values fk (k = 0, . . . , N) is multiplied by the
matrix

I2
N = h2




1 0 0 0 · · · 0
2 1 0 0 · · · 0

· · · · · · . . . · · · · · · · · ·
· · · 3 2 1 0 0
N · · · 3 2 1 0

N + 1 N · · · 3 2 1




, (3.58)

and the result is the column vector of approximated values of the integral (3.55), namely
g2(tk), k = 2, . . . , N , with the exception of the last two elements, which correspond to
the nodes lying outside of the considered interval [a, b]. We can look at the matrix I2

N

as at a discrete analog of left rectangular quadrature rule for evaluating the two-fold
integral (3.55). The generating function for I2

N is

ϕ2(z) = h2(1− z)−2. (3.59)

It must be mentioned here that the matrix I2
N is inverse to the matrix B2

N , which corre-
sponds to backward difference approximation of the second derivative. We have:

B2
NI

2
N = I2

NB
2
N ←→ truncN (β2(z)ϕ2(z)) = 1←→ E. (3.60)

Therefore, having one of these matrices, we can immediately obtain another by matrix
inversion.

If we consider p-fold integration with moving upper limit,

gp(t) =

t∫

a

dτp

τp∫

a

dτp−1 . . .

τ2∫

a

f(τ1)dτ1, (3.61)

and apply the left rectangular quadrature rule p times, then we arrive at the following
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relationship in the matrix form:




gp(tp)
gp(tp+1)

...
gp(tN )

...
gp(tN + h)
gp(tN + ph)




= hp




γ0 0 0 0 · · · · · · 0
γ1 γ0 0 0 · · · · · · 0

· · · · · · . . . · · · · · · · · · · · ·
· · · γ2 γ1 γ0 0 · · · · · ·
· · · · · · · · · · · · . . . · · · · · ·
γN−1 · · · · · · γ2 γ1 γ0 0
γN γN−1 · · · · · · γ2 γ1 γ0







f0

f1
...
fp
...

fN−1

fN




, (3.62)

involving the lower triangular strip matrix IpN with the generating function ϕp(z) =
hp(1− z)−p,

IpN = hp




γ0 0 0 0 · · · · · · 0
γ1 γ0 0 0 · · · · · · 0

· · · · · · . . . · · · · · · · · · · · ·
· · · γ2 γ1 γ0 0 · · · · · ·
· · · · · · · · · · · · . . . · · · · · ·
γN−1 · · · · · · γ2 γ1 γ0 0
γN γN−1 · · · · · · γ2 γ1 γ0




, (3.63)

which is inverse to the matrix Bp
N , corresponding to backward difference approximation

of the p-th derivative:

Bp
NI

p
N = IpNB

p
N ←→ truncN (βp(z)ϕp(z)) = 1←→ E. (3.64)

In view of (3.26) it follows from the properties of the generating functions ϕp(z) =
hp(1− z)−p that

I2
N = I1

N I1
N , (3.65)

IpN = I1
N I1

N . . . I
1
N︸ ︷︷ ︸

p

, (3.66)

Ip+qN = IpN IqN = IqN IpN , (3.67)

where p and q are positive integers. Moreover, matrices IpN commute also with matrices
Bp
N .

3.5.2 Moving lower limit of integration

If we consider p-fold integration with moving lower limit,

yp(t) =

b∫

t

dτp

b∫

τp

dτp−1 . . .

b∫

τ2

f(τ1)dτ1, (3.68)
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then its discrete analog is represented by the upper triangular strip matrix JpN with the
generating function ϕp(z) = hp(1− z)−p:

JpN = hp




γ0 γ1 γ2 · · · · · · γN−1 γN
0 γ0 γ1 γ2 · · · · · · γN−1

· · · · · · . . . · · · · · · · · · · · ·
· · · 0 0 γ0 γ1 γ2 · · ·
· · · · · · · · · · · · . . . · · · · · ·
0 · · · · · · 0 0 γ0 γ1

0 0 · · · · · · 0 0 γ0




, (3.69)

The matrix JpN is inverse to the matrix F pN , corresponding to backward difference ap-
proximation of the p-th derivative:

F pNJ
p
N = JpNF

p
N ←→ truncN (βp(z)ϕp(z)) = 1←→ E. (3.70)

In view of (3.26) it follows from the properties of the generating functions ϕp(z) =
hp(1− z)−p that

J2
N = J1

N J1
N , (3.71)

JpN = J1
N J1

N . . . J
1
N︸ ︷︷ ︸

p

, (3.72)

Jp+qN = JpN JqN = JqN JpN , (3.73)

where p and q are positive integers. Moreover, matrices JpN commute also with matrices
F pN .

It also should be noted that transposition of the matrix IpN , representing the integration
with moving upper limit, gives the matrix JpN , which corresponds to integration with
moving lower limit: (

IpN

)T
= JpN ,

(
JpN

)T
= IpN . (3.74)

3.6 Fractional differentiation

The triangular strip matrices can also be used for fractional derivatives. In this case, we
arrive at lower (upper) triangular matrices, which have no zeros below (above) the main
diagonal.

3.6.1 Left-sided fractional derivatives

Let us consider a function f(t), defined in [a, b], such that f(t) ≡ 0 for t < a. (Functions
satisfying this condition are often called causal functions.) We assume that the function
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f(t) is good enough for considering its left-sided fractional derivative of real order α,
(n− 1 ≤ α < n),

aD
α
t f(t) =

1

Γ(n− α)

(
d

dt

)n t∫

a

f(τ)dτ

(t− τ)α−n+1
, (a < t < b). (3.75)

Let us take equidistant nodes with the step h: tk = kh (k = 0, 1, . . . , N), in the interval
[a, b], where t0 = a and tN = b. Using the backward fractional difference approximation
for the α-th derivative at the points tk, k = 0, 1, . . . , N , we have:

aD
α
tk
f(t) ≈ ∇

αf(tk)

hα
= h−α

k∑

j=0

(−1)j
(
α

j

)
fk−j , k = 0, 1, . . . , N. (3.76)

All N + 1 formulas (3.76) can be written simultaneously in the matrix form:




h−α∇αf(t0)

h−α∇αf(t1)

h−α∇αf(t2)
...

h−α∇αf(tN−1)

h−α∇αf(tN )




=
1

hα




ω
(α)
0 0 0 0 · · · 0

ω
(α)
1 ω

(α)
0 0 0 · · · 0

ω
(α)
2 ω

(α)
1 ω

(α)
0 0 · · · 0

. . .
. . .

. . .
. . . · · · · · ·

ω
(α)
N−1

. . . ω
(α)
2 ω

(α)
1 ω

(α)
0 0

ω
(α)
N ω

(α)
N−1

. . . ω
(α)
2 ω

(α)
1 ω

(α)
0







f0

f1

f2

...

fN−1

fN




(3.77)

ω
(α)
j = (−1)j

(
α

j

)
, j = 0, 1, . . . , N. (3.78)

In the formula (3.77) the column vector of function values fk (k = 0, . . . , N) is multiplied
by the matrix

Bα
N =

1

hα




ω
(α)
0 0 0 0 · · · 0

ω
(α)
1 ω

(α)
0 0 0 · · · 0

ω
(α)
2 ω

(α)
1 ω

(α)
0 0 · · · 0

. . .
. . .

. . .
. . . · · · · · ·

ω
(α)
N−1

. . . ω
(α)
2 ω

(α)
1 ω

(α)
0 0

ω
(α)
N ω

(α)
N−1

. . . ω
(α)
2 ω

(α)
1 ω

(α)
0




(3.79)

and the result is the column vector of approximated values of the fractional derivative

aD
α
tk
f(t), k = 0, 1, . . . , N . We can look at the matrix Bα

N as at a discrete analog of
left-sided fractional differentiation of order α.

The generating function for the matrix Bα
N is

βα(z) = h−α(1− z)α. (3.80)
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Since for lower triangular matrices Bα
N and Bβ

N we always have

Bα
NB

β
N = Bβ

NB
α
N = Bα+β

N ,

we can consider such matrices as discrete analogs of the corresponding left-sided frac-
tional derivatives aD

α
t and aD

β
t , where n − 1 ≤ α < n and m − 1 ≤ α < m, only

if

aD
α
t

(
aD

β
t f(t)

)
= aD

β
t

(
aD

α
t f(t)

)
= aD

α+β
t f(t),

which holds if
f (k)(a) = 0, k = 1, 2, . . . , r − 1, (3.81)

where r = max{n,m}.
This means that if left-sided fractional derivatives of a function f(t) of orders less than
some integer r are considered, than they can all be replaced with their corresponding
discrete analogs, if the function f(t) satisfies the conditions (3.81).

3.6.2 Right-sided fractional derivatives

Let us consider a function f(t), defined in [a, b], such that f(t) ≡ 0 for t > b. We assume
that the function f(t) is good enough for considering its right-sided fractional derivative
of real order α, (n− 1 ≤ α < n),

tD
α
b f(t) =

(−1)n

Γ(n− α)

(
d

dt

)n b∫

t

f(τ)dτ

(τ − t)α−n+1
, (a < t < b). (3.82)

Similarly to the previous section, we can obtain the discrete analog of the right-sided
fractional differentiation on the net of equidistant nodes with the step h: tk = kh
(k = 0, 1, . . . , N), in the interval [a, b], where t0 = a and tN = b, which is represented by
the matrix

FαN =
1

hα




ω
(α)
0 ω

(α)
1

. . .
. . . ω

(α)
N−1 ω

(α)
N

0 ω
(α)
0 ω

(α)
1

. . .
. . . ω

(α)
N−1

0 0 ω
(α)
0 ω

(α)
1

. . .
. . .

· · · · · · · · · . . .
. . .

. . .

0 · · · 0 0 ω
(α)
0 ω

(α)
1

0 0 · · · 0 0 ω
(α)
0




(3.83)

The generating function for the matrix FαN is the same as for the matrix Bα
N : βα(z) =

h−α(1− z)α.

It should also be mentioned that transposition of the matrix Bα
N , corresponding to left-

sided fractional differentiation, gives the matrix F pN , which corresponds to right-sided
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differentiation: (
Bα
N

)T
= FαN ,

(
FαN

)T
= Bα

N . (3.84)

Similarly to the previous section, if right-sided fractional derivatives of a function f(t) of
orders less than some integer r are considered, than they can all be replaced with their
corresponding discrete analogs, if the function f(t) satisfies the conditions

f (k)(b) = 0, k = 1, 2, . . . , r − 1. (3.85)

3.6.3 Sequential fractional derivatives

For left-sided sequential fractional derivatives, in which all derivatives in the sequence
can be arbitrarily interchanged,

aD~αt f(t) = aD
α1
t aD

α2
t . . . aD

αn
t f(t), (3.86)

~α = (α1, α2, . . . , αn),

(and the same equidistant nodes as above) the discrete analog B~αN has the form of the
product of matrices Bαk

N , corresponding to operators aD
αk
t , k = 1, 2, . . . , n:

B~αN = Bα1
N Bα2

N . . . Bαn
N =

n∏

k=1

Bαk
N . (3.87)

Similarly, for right-sided fractional derivatives, in which all derivatives in the sequence
can be arbitrarily interchanged,

tD~αb f(t) = tD
α1
b tD

α2
b . . . tD

αn
b f(t), (3.88)

the discrete analog F ~αN is

F ~αN = Fα1
N Fα2

N . . . FαnN =
n∏

k=1

FαkN . (3.89)

3.7 Fractional integration

Discrete analogs of left- and right-sided fractional integrals can be obtained by inversion
of the discrete analogs of the corresponding fractional derivatives.
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3.7.1 Left-sided fractional integration

To obtain the matrix IαN , corresponding to the discrete analog of the left-sided fractional
integration (α > 0),

aD
−α
t f(t) =

1

Γ(α)

t∫

a

(t− τ)α−1f(τ)dτ, (a < t < b), (3.90)

we simply invert the matrix Bα
N , corresponding to the left-sided fractional differentia-

tion:

IαN =
(
Bα
N

)−1
. (3.91)

If ϕα(z) denotes the generation function for IαN and βα(z) is the generating function for
Bα
N , then, taking into account the rule (3.28), we can write:

IαN ←→ ϕN (z) = truncN
(
β−1
α (z)

)
= truncN

(
hα(1− z)−α) .

Therefore, the matrix IαN has the following form:

IαN = hα




ω
(−α)
0 0 0 0 · · · 0

ω
(−α)
1 ω

(−α)
0 0 0 · · · 0

ω
(−α)
2 ω

(−α)
1 ω

(−α)
0 0 · · · 0

. . .
. . .

. . .
. . . · · · · · ·

ω
(−α)
N−1

. . . ω
(−α)
2 ω

(−α)
1 ω

(−α)
0 0

ω
(−α)
N ω

(−α)
N−1

. . . ω
(−α)
2 ω

(−α)
1 ω

(−α)
0




(3.92)

3.7.2 Right-sided fractional integration

Similarly, inversion of the matrix FαN , corresponding to the right-sided fractional differ-
entiation, gives the matrix JαN ,

JαN = hα




ω
(−α)
0 ω

(−α)
1

. . .
. . . ω

(−α)
N−1 ω

(−α)
N

0 ω
(−α)
0 ω

(−α)
1

. . .
. . . ω

(−α)
N−1

0 0 ω
(−α)
0 ω

(−α)
1

. . .
. . .

· · · · · · · · · . . .
. . .

. . .

0 · · · 0 0 ω
(−α)
0 ω

(−α)
1

0 0 · · · 0 0 ω
(−α)
0




(3.93)

which is the discrete analog of the right-sided fractional integration (α > 0):

tD
−α
b f(t) =

1

Γ(α)

b∫

t

(τ − t)α−1f(τ)dτ, (a < t < b). (3.94)
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3.7.3 Feller and Riesz potentials on a finite interval

Let us consider the Riesz potential Rαf(t) and the modified Riesz potential Mαf(t) on
a finite interval [13, Chap. 3]:

Rαf(t) =
1

2Γ(α) cos (απ/2)

b∫

a

ϕ(τ)dτ

|t− τ |1−α , (a < t < b), (3.95)

Mαf(t) =
1

2Γ(α) sin (απ/2)

b∫

a

sign(t− τ)ϕ(τ)dτ

|t− τ |1−α , (a < t < b). (3.96)

Obviously, both these operators are linear combinations of the left-sided and right-sided
fractional integrals:

Rαf(t) =
1

2 cos (απ/2)

(
aD
−α
t f(t) + tD

−α
b f(t)

)
, (3.97)

Mαf(t) =
1

2 sin (απ/2)

(
aD
−α
t f(t)− tD

−α
b f(t)

)
. (3.98)

The matrices RαN andMα
N of their discrete analogs are linear combinations of the matrix

IαN , corresponding to the left-sided fractional integral, and the matrix JαN , corresponding
to the right-sided fractional integral:

RαN =
1

2 cos (απ/2)
( IαN + JαN ) , (3.99)

Mα
N =

1

2 sin (απ/2)
( IαN − JαN ) . (3.100)

The Feller potential operator Φαf(t) is also a linear combination of left- and right-sided
fractional integrals, but with general constant coefficients u, v [13, Chap. 3]:

Φαf(t) = u aD
−α
t + v tD

−α
b f(t), (3.101)

and the matrix of its discrete analog is

Φα
N = uIαN + vJαN . (3.102)

Numerical inversion of the Riesz and Feller potential operators (3.95), (3.96), and (3.101),
reduces to inversion of the corresponding square matrices RαN , Mα

N , and Φα
N .

Example 1. Let us consider the fractional integral equation with the Riesz kernel:

1

Γ(1− α)

1∫

−1

y(τ) dτ

|t− τ |α = 1, (−1 < t < 1), (3.103)
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which has the solution [12, eq. 6.116]

y(t) = π−1Γ(1− α) cos

(
απ

2

)
(1− t2)(α−1)/2. (3.104)

Writing the equation (3.103) in the form

−1D
−(1−α)
t y(t) + tD

−(1−α)
1 y(t) = 1,

and replacing the fractional derivatives with their discrete analogs, we obtain the system
of linear algebraic equations

(
B
−(1−α)
N + F

−(1−α)
N

)
YN = FN , (3.105)

where FN =
(
1, 1, . . . , 1

)T
, for determination of YN =

(
y(t0), y(t1), . . . , y(tN )

)T
, which

represents the approximate solution of the equations (3.103).

The numerical solution of the equation (3.103) for α = 0.8 is shown in Fig. 3.1. In this
figure, and also in all subsequent figures, only a subset of the points of the obtained
numerical solution is shown; otherwise it would be difficult to depict the analytical
solution and the numerical one, which are very close each other.

3.8 Numerical solution of fractional differential equations

The use of triangular strip matrices significantly simplifies numerical solution of frac-
tional differential equations. Instead of writing unwieldy recurrence relationships for
determination of the values of the unknown function in equidistant discretization nodes,
one can immediately write a system of algebraic equations for those values.

For convenience, let us introduce a certain type of matrices, which are obtained from the
N ×N unit matrix E by keeping only some of its rows and omitting all other rows: S1 is
obtained by omitting only the first row of E; S2 is obtained by omitting only the second
row; S1,2 is obtained by omitting only the first and the second row of E; and, in general,
Sr1,r2,...,rk is obtained by omitting the rows with the numbers r1, r2, . . . , rk.

If A is a square N × N matrix, then the product Sr1,r2,...,rkA contains only rows of
A with the numbers different from r1, r2, . . . , rk. Similarly, the product ASTr1,r2,...,rk
contains only columns of A with the numbers different from r1, r2, . . . , rk. Because of
this property, the matrix Sr1,r2,...,rk is called an eliminator. In case of infinite matrices,
similar matrices appeared in [4].

The following simple example illustrates the main property of eliminators:

A =



a11 a12 a13

a21 a22 a23

a31 a32 a33


 ; S1 =

[
0 1 0
0 0 1

]
; S1A =

[
a21 a22 a23

a31 a32 a33

]
;
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Figure 3.1: Solution of equation 1
Γ(1−α)

1∫
−1
|t− τ |−αy(τ) dτ = 1.
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AST1 =



a12 a13

a22 a23

a32 a33


 ; S1AS

T
1 =

[
a22 a23

a32 a33

]
.

Considering (N + 1)× (N + 1) lower triangular matrices LN (3.1) and upper triangular
matrices UN (3.2), and numbering rows and columns from 0 to N , we have the following
useful relationships:

S0

{
LN
UN

}
ST0 =

{
LN−1

UN−1

}
, (3.106)

SN

{
LN
UN

}
STN =

{
LN−1

UN−1

}
, (3.107)

S0,1,...,k

{
LN
UN

}
ST0,1,...,k =

{
LN−k−1

UN−k−1

}
, (3.108)

SN−k,N−k+1,...,N

{
LN
UN

}
STN−k,N−k+1,...,N =

{
LN−k−1

UN−k−1

}
. (3.109)

In other words, simultaneous multiplication of a triangular strip matrix by the eliminator
S0,1,...,k (or by SN−k,N−k+1,...,N ) on the left and ST0,1,...,k (respectively, by STN−k,N−k+1,...,N )
on the right preserves the type and the structure of the triangular strip matrix, and only
reduces its size by k + 1 rows and k + 1 columns.

3.8.1 Initial value problems for FDEs

The general procedure of numerical solution of fractional differential equations consists
of two steps.

First, initial conditions are used to reduce a given initial-value problem to a problem with
zero initial conditions. At this stage, instead of a given equation a modified equation,
incorporating initial values, is obtained.

Then the system of algebraic equations is obtained by replacing all derivatives (of frac-
tional and integer orders) in the obtained modified equation by the corresponding ma-
trices (Bα

N for left-sided derivatices, FαN for right-sided derivatives) for their discrete
analogs.

We will consider an m-term linear fractional differential equation with non-constant
coefficients of the following form:

m∑

k=1

pk(t)D
αky(t) = f(t), (3.110)

0 ≤ α1 < α2 < . . . < αm, n− 1 < αm < n,
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where Dαk denotes either Riemann-Liouville or Caputo left-sided fractional derivative
of order αk.

Let us denote

P
(k)
N = diag

(
pk(t0), pk(t1), . . . , pk(tN )

)
=




pk(t0) 0 . . . 0
0 pk(t1) 0 . . .

0 . . .
. . . 0

0 . . . 0 pk(tN )



, (3.111)

YN =
(
y(t0), y(t1), . . . , y(tN )

)T
, FN =

(
f(t0), f(t1), . . . , f(tN )

)T
. (3.112)

Using these notations and taking into account that the discrete analog of the left-sided
fractional derivative Dαk is Bαk

N , we can write a discrete analog of the fractional differ-
ential equation (3.110):

m∑

k=1

P
(k)
N Bαk

N YN = FN . (3.113)

3.8.2 Zero initial conditions

If n − 1 < αm < n, then the Riemann-Liouville and the Caputo formulations of the
equation (3.110) are equivalent under the assumption of zero initial values of the function
y(t) and its (n− 1) derivatives [12]:

y(k)(t0) = 0, k = 0, 1, . . . , n− 1. (3.114)

Approximating the derivatives in the initial conditions (3.114) by backward differences,
we immediately obtain:

y(t0) = y(t1) = . . . = y(tn−1) = 0. (3.115)

The linear algebraic system for determination of yn, . . . , yN is obtained from the system
(3.113) by omitting its first n rows and substituting the zero starting values (3.115) into
the remaining equations. This can be symbolically written with the help of elimina-
tor:

{
S0,1,...,n−1

{
m∑

k=1

P
(k)
N Bαk

N

}
ST0,1,...,n−1

}
{S0,1,...,n−1YN} = S0,1,...,n−1FN . (3.116)

Solution of the linear algebraic system (3.116) along with the starting values (3.115)
gives the numerical solution of the fractional differential equation (3.110) under zero
initial conditions (3.114).
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If the coefficients pk(t) are constant, i.e. pk(t) ≡ pk, then the system (3.116) takes on
the simplest form:

m∑

k=1

pkB
αk
N−n {S0,1,...,n−1YN} = S0,1,...,n−1FN . (3.117)

Example 2. Let us consider the following two-term fractional differential equation
under zero initial conditions:

y(α)(t) + y(t) = 1, (3.118)

y(0) = 0, y′(0) = 0, (3.119)

which has the analytical solution

y(t) = tαEα,α+1(−tα). (3.120)

The numerical solution of the problem (3.118)–(3.119) can be found from the system
(3.117), where we have m = 2, α1 = α, α2 = 0, n = 2, p1 = p2 = 1, Bα1

N−n = Bα
N−2,

Bα2
N−n = EN−2, FN = ( 1, 1, . . . , 1︸ ︷︷ ︸

N

)T . For these vales, the system of algebraic equations

for determining yk, k = 2, 3, . . . , N takes on the form:

{
Bα
N−2 + EN−2

} {S0,1YN} = S0,1FN . (3.121)

It should be also added that from the initial conditions we have y0 = y1 = 0.

The numerical solution of the problem (3.118)–(3.119) for α = 1.8 is shown in Fig. 3.2.

3.8.3 Initial conditions in terms of integer-order derivatives

If fractional derivatives in the equation (3.110), where n − 1 < αm < n, are Caputo
derivatives, then the initial conditions are expressed in terms of classical integer-order
derivatives and can be non-zero:

y(k)(t0) = ck, k = 0, 1, . . . , n− 1. (3.122)

The solution of the initial-value problem problem (3.110)–(3.122) can be written in the
form

y(t) = y∗(t) + z(t), (3.123)

where y∗(t) is some known function, satisfying the conditions y(k)(t0) = ck, k = 0, 1, . . . , n−
1, and z(t) is a new unknown function.
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Figure 3.2: Solution of the problem y(1.8)(t) + y(t) = 1, y(0) = 0, y′(0) = 0

Substituting (3.123) into the equation (3.110) and the initial conditions (3.122), we
obtain for the function z(t) an initial-value problem with zero initial conditions, which
can be solved as described in Section 3.8.2.

Example 3. Let us consider the following two-term fractional differential equation
under non-zero initial conditions:

y(α)(t) + y(t) = 1, (3.124)

y(0) = c0, y′(0) = c1. (3.125)

The analytical solution, obtained with the help of the Laplace transform of the Caputo
fractional derivatives [12], is given by expression

y(t) = c0Eα,1(−tα) + c1tEα,2(−tα) + tαEα,α+1(−tα). (3.126)

To obtain numerical solution, we have first to transform the problem (3.124)–(3.125) to
the problem with zero initial conditions. For this, let us introduce an auxiliary function
z(t), such that

y(t) = c0 + c1t+ z(t).



CHAPTER 3. MATRIX APPROACH FOR ORDINARY FDES 63

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

analytical solution
numerical solution (h=0.01)

Figure 3.3: Solution of the problem y(1.8)(t) + y(t) = 1, y(0) = 1, y′(0) = −1

Substituting this expression into the equation (3.124) and in the initial conditions
(3.125), we obtain the problem for finding z(t):

z(α)(t) + z(t) = 1− c0 − c1t, (3.127)

z(0) = 0, z′(0) = 0. (3.128)

The numerical solution of this problem can be found as described in Section 3.8.2, and the
numerical solution y(t) of the problem (3.124)–(3.125) is obtained using the relationship
y(t) = c0 + c1t+ z(t).

The numerical solution of the problem (3.124)–(3.125) for α = 1.8, c0 = 1, c1 = −1 is
shown in Fig. 3.3.

3.8.4 Initial conditions in terms of Riemann-Liouville
fractional derivatives

Initial value problems for fractional differential equations with non-zero initial conditions
in terms of Riemann-Liouville derivatives, namely

aD
α−k−1
t y(t)

∣∣∣
t→a

= ck, k = 0, 1, . . . , n− 1, (3.129)
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can be also transformed to initial-value problems with zero initial condition. Such a
transformation allows us to circumvent the difficulty consisting in the fact that there is
still no known approximation for such initial conditions.

Example 4. Let us consider the following two-term fractional differential equation
under non-zero initial conditions:

y(α)(t) + y(t) = 1, (3.130)

y(α−1)(0) = c0, y(α−2)(0) = c1. (3.131)

The analytical solution, obtained with the help of the Laplace transform of the Riemann–
Liouville fractional derivative [12], is given by expression

y(t) = c0t
α−1Eα,α(−tα) + c1t

α−2Eα,α−1(−tα) + tαEα,α+1(−tα). (3.132)

To obtain numerical solution, we have first to transform the problem (3.130)–(3.131) to
the problem with zero initial conditions. For this, let us introduce an auxiliary function
z(t), such that

y(t) = c0t
α−1 + c1t

α−2 + z(t).

Substituting this expression into the equation (3.130) and into the initial conditions
(3.131), we obtain the problem for finding z(t):

z(α)(t) + z(t) = 1− c0t
α−1 − c1t

α−2, (3.133)

z(0) = 0, z′(0) = 0. (3.134)

The numerical solution of this problem can be found as described in Section 3.8.2, and the
numerical solution y(t) of the problem (3.130)–(3.131) is obtained using the relationship
y(t) = c0t

α−1 + c1t
α−2 + z(t).

The numerical solution of the problem (3.130)–(3.131) for α = 1.8, c0 = 1, c1 = −1 is
shown in Fig. 3.4.

3.8.5 Nonlinear FDEs

Triangular strip matrices can be useful also for solving fractional differential equations
of a general form. Let us write, for example, an equation with left-sided fractional
derivatives y(αi)(t) = aD

αi
t y(t) :

y(α1)(t) = f(t, y(α2)(t), y(α3)(t), . . . , y(αk)(t)), (3.135)

(0 < α1 < α2 < . . . < αk ≤ n.)
assuming that the initial conditions are already transformed to zero initial conditions.
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Figure 3.4: Solution of the problem y(1.8)(t) + y(t) = 1; y(0.8)(0) = 1; y(−0.2)(0) = −1.

Replacing all fractional derivatives in the equation (3.135) with their discrete analogs
and utilizing zero initial conditions, we obtain a nonlinear algebraic system

Bα1
N YN = f(EtN , B

α2
N YN , B

α3
N YN , . . . , B

αk
N YN ), (3.136)

yj = 0, j = 1, 2, . . . , n− 1,

where YN = (y0, y1, . . . , yN )T , tN = (t0, t1, . . . , tN )T , yj = y(tj), tj = jh, (j = 0, 1, . . . , N),
and E is (N + 1)× (N + 1) unit matrix.

3.9 Chapter summary

The suggested approach, using the triangular strip matrices, provides:

• a uniform approach to discretization of derivatives of arbitrary real order, includ-
ing classical integer-order derivatives, and various types of fractional derivatives,
including left- and right-sided derivatives, and sequential fractional derivatives;

• a uniform approach to numerical solution of differential equations of integer order
and of fractional order;

• a convenient language for discretization of differential equations of arbitrary real
order;
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• a method for numerical solution of initial value problems and boundary value
problems for ordinary differential equations of arbitrary real order;

• a possible method for numerical solution of non-linear differential equations of
arbitrary real order.

The triangular matrix approach can also be used for obtaining new quadrature formulas
for fractional integrals. For this, any approximation of fractional derivatives should be
written in the form of a triangular strip matrix, inversion of which gives the correspond-
ing quadrature formula for fractional integrals.

Similarly, new approximations of fractional derivatives can be obtained by inverting
the triangular strip matrices, corresponding to quadrature formulas for fractional inte-
grals.
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Chapter 4

Matrix approach for partial
fractional differential equations

4.1 Introduction

Recently, kinetic equations of the diffusion, diffusion–advection, and
Fokker–Planck type with partial fractional derivatives were recognized as a useful ap-
proach for the description of transport dynamics in complex systems whose temporal evo-
lution deviates from the standard laws, that is, from exponential Debye or Gaussian laws,
and from fast decaying correlations. Examples include systems exhibiting Hamiltonian
chaos, disordered medium, plasma and fluid turbulence, underground water pollution,
dynamics of protein molecules, motions under the influence of optical tweezers, reac-
tions in complex systems, and more (see reviews on fractional kinetics [6, 44, 56, 68, 45],
the recent multi-author book [28], and references therein). These fractional equations
are derived asymptotically from basic random walk models, the generalized master and
Langevin equations. The advantage of the fractional models lies in the straightforward
way of including external force terms and of calculating boundary value problems. Also,
the consideration of transport in the phase space spanned by both position and velocity
coordinates is possible within the fractional approach. However, because of complicated
integro-differential structure of fractional kinetic equations the analytical solutions are
presently known only in a very few relatively simple cases. Therefore, the development
of numerical methods is of current importance.

Let us recall briefly how the kinetic equations with integer partial derivatives can be
“fractionalized”. There are two generic types of fractionalization, which can be explained
by taking as an example the parabolic diffusion equation for the particles density u(x, t)
in a one-dimensional space,

68
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∂u

∂t
= χ

∂2u

∂x2
, ( t > 0, a < x < b ) (4.1)

where constant χ is diffusion coefficient. The first type of fractionalization leads to a
time fractional diffusion equation by means of replacing the first order time derivative
by afractional derivative of order α less than 1,

C
0D

α
t u = χ

∂2u

∂x2
, ( t > 0, a < x < b ) (4.2)

Here, C0D
α
t is the Caputo fractional derivative [2], which is defined as

C
aD

µ
xφ(x) =

1

Γ(m− µ)

x∫

a

φ(m)(ξ)dξ

(x− ξ)µ−m+1
, (m− 1 < µ ≤ m) (4.3)

Taking α = 1 in (4.2) gives the classical diffusion equation (4.1).

Other two forms of a time fractional diffusion equation that appears in the literature use
the Riemann-Liouville fractional derivative instead of the Caputo one [44]. Although
recently, in addition to a geometric and physical interpretation of fractional integra-
tion and fractional differentiation [52], a physical interpretation for the initial conditions
in terms of the Riemann-Liouville fractional derivatives of the unknown function has
been suggested [27], the use of Caputo derivative in physical problems is perhaps more
convenient since it allows using initial conditions expressed in terms of values of the
unknown function and its integer-order derivatives [50]. However, all three forms of
“time-fractionalization” are equivalent if zero initial conditions are posed. In what fol-
lows we use the form with the Caputo derivative, equation (4.2), since some of the
illustrating examples use non-zero initial conditions.

In the second type of fractionalization, the second order spatial derivative is replaced by
the fractional derivative of the order β between 1 and 2, thus leading to spatial fractional
diffusion equation,

∂u

∂t
= χ

∂βu

∂|x|β , ( t > 0, a < x < b ) (4.4)

where ∂β/∂|x|β (we adopt here the notation introduced in [54]) is a partial (with respect
to spatial variable) symmetric Riesz derivative, which is defined as a half-sum of the left-
and right-sided Riemann-Liouville derivatives [50, 51]:

dβφ(x)

d|x|β = Dβ
Rφ(x) =

1

2

(
aD

β
xφ(x) + xD

β
b φ(x)

)
, (4.5)
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where the left- and right-sided Riemann-Liouville derivatives are defined by

aD
µ
xφ(x) =

1

Γ(m− µ)

(
d

dx

)m x∫

a

φ(ξ)dξ

(x− ξ)µ−m+1
, (m− 1 < µ ≤ m), (4.6)

xD
µ
b φ(x) =

1

Γ(m− µ)

(
− d

dx

)m b∫

x

φ(ξ)dξ

(ξ − x)µ−m+1
, (m− 1 < µ ≤ m), (4.7)

For β = 2 the equation (4.4) becomes the classical diffusion equation (4.1).

Other forms of asymmetric space fractional generalizations use the left-side Riemann -
Liouville derivative instead of the symmetric Riesz derivative [12, 40], or asymmetric
derivative with different asymmetry factors at the left- and right-side derivatives [13,
11, 42]. In terms of random walk schemes, the symmetric derivative corresponds to a
symmetric jump probability distribution of a diffusing particle, whereas any asymmetry
in space derivative accounts for inherent force-free preferable direction of jumps which
may occur, e.g., in heterogeneous porous media or magnetically confined fusion plasmas.
In this chapter we restrict ourselves to symmetric case, equation (4.4).

Of course, there are different generalizations of time and space fractional diffusion equa-
tions, including: multidimensional fractional diffusion and kinetic equations [5, 17],
both time and space fractional generalizations [36], different regular forces in space
and time fractional Fokker-Planck equations [43, 4, 14, 57, 26, 64], variable transport
coefficients [65], equations with fractional derivatives of distributed and variable orders
[7, 8, 3, 37] etc. The realm of fractional kinetics is growing, and therefore it is desirable
to have at hand a method for numerical solution which would be relatively simple and at
the same time general enough to deal effectively with different forms of fractional kinetic
equations. However, while different numerical tools for ordinary fractional equations
exist and a basic framework of their numerical solution is already established, relatively
few numerical methods exist to solve fractional equations with partial derivatives, and
the development of effective numerical schemes is now on the agenda. We recall briefly
the different approaches used in the literature.

The numerical methods differ essentially in the way in which normal and fractional
derivatives are discretized. In [35] to solve diffusion-reaction equation with the left
Riemann-Liouville derivative between 1 and 2, the L2 discretization method was used
taken from [47], together with its modification, L2C (both L2 and L2C methods are
based on numerical approximation of a fractional integral that appears in the definition
of the Riemann-Liouville fractional derivative). It was shown that the former is the most
accurate for orders larger than 1.5, whereas the latter is the most accurate for orders
less than 1.5. For the first order time derivative, the explicit forward Euler formula and
semi-implicit scheme were used.
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Langlands and Henry [29] used L1 scheme from [47] to discretize the Riemann-Liouville
fractional time derivative of order between 1 and 2.

Yuste [67] considered a Grünwald-Letnikov approximation for the Riemann-Liouville
time derivative and used a weighted average for the second-order space derivative.

Scherer et al. [55] introduced very recently a modification of the Grünwald-Letnikov
approximation for the case of the Caputo derivative of a function which is not zero in
the starting point of the considered time interval, and applied that approximation for
the numerical solution of fractional diffusion equations with the Caputo time derivative
and non-zero initial conditions.

To solve the one-dimensional space fractional advection-dispersion equation with left-side
Riemann-Liouville derivative and variable coefficients the shifted Grünwald-Letnikov
approximation was proposed by Meerschaert and Tadjeran [40]. For two-sided space-
fractional partial differential equations the shifted Grünwald-Letnikov formula was pro-
posed and discussed in [41]. The fractional Crank-Nicholson method based on the
shifted formula was elaborated, giving temporally and spatially second-order numer-
ical estimates [61]. The generalizations of the shifted formula and of the fractional
Crank-Nicholson method in the two-dimensional case were discussed in [39] and [60],
respectively.

Another method to solve the space-fractional Fokker-Planck equation with constant
coefficient on the fractional derivative term was pursued by Liu et al. [32]. They
transform the partial differential equation into a system of ordinary differential equations,
which is solved by a method of lines.

Ervin and Roop [15, 16] presented a theoretical framework for the Galerkin finite element
approximation to the steady state fractional advection-diffusion equation, and extended
this approach to multidimensional partial differential equations with constant coefficients
on the fractional derivative terms.

Valko and Abate [62] solved the time-fractional diffusion equation on a semi-infinite
domain by numerical inversion of the two-dimensional Laplace transform. To solve the
time-fractional diffusion equation in a bounded domain, Lin and Xu [31] proposed the
method based on a finite difference scheme in time and Legendre spectral method in
space.

Liang and Chen [30] used a combination of symbolic computations and numerical inver-
sion of the Laplace transform for solving a time-fractional diffusion-wave equation with
the time derivative of order between 1 and 2.

We also mention that in order to approximate shifted Caputo time derivative appearing
in hydrodynamic equations for heterogeneous porous media the modification of Yuan
and Agrawal’s method [66] was used to transform a fractional derivative into an infinite
integral over auxiliary internal variables [34].

Another approach for the solution of fractional kinetic equations employs the methods
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of Monte Carlo type (random walk based methods). A set of random walk schemes
applied to fractional diffusion equations based on the Grünwald-Letnikov approximation
was developed in the papers by Gorenflo, Mainardi and co-workers. They were ap-
plied to solve (i) symmetric space-fractional diffusion equation [20, 22]; (ii) asymmetric
space-fractional diffusion equation in the Lèvy–Feller form [21]; (iii) time-fractional dif-
fusion equation with Caputo derivative [25]; (iv) time-space fractional diffusion equation
[24, 23]. Chechkin et al. [9] generalized the approach on a double-order time fractional
diffusion equation. Gorenflo and Abdel-Rehim [19] proposed discrete approximations
to time-fractional diffusion process with non-homogeneous drift towards the origin by
generalization of Ehrenfest’s urn model. The Lèvy–Feller diffusion-advection process
with a constant drift was approximated by random walk and finite difference method by
Liu et al. [33]. The random walk particle tracking approach to solve one-dimensional
space-fractional diffusion-advection equation with space dependent coefficients was em-
ployed by Meerschaert and co-authors [65]. The method based on numerical solution
of a coupled stochastic differential equations driven by Lèvy symmetric stable processes
was proposed in [58] to solve a non-linear evolution problem involving the fractional
Laplacian operator.

All aforementioned works indicate that numerical solution of partial fractional differential
equations plays an important and increasing role in the applications of the methods and
models of non-integer order.

In the present chapter we propose a general approach to the numerical solution of partial
fractional differential equations, which is based on the matrix form representation of
discretized fractional operators introduced in [51]. This approach unifies the numerical
differentiation of arbitrary (including integer) order and the n-fold integration, using the
so-called triangular matrices. Applied to numerical solution of differential equations, it
also unifies the solution of integer- and fractional-order partial differential equations.
The suggested approach leads to significant simplification of the numerical solution of
partial differential equations, and it is general enough to deal with different types of
partial fractional differential equations, even with delays.

4.2 The idea of the suggested method

The method that we suggest is based on triangular strip matrix approach [51] to dis-
cretization of operators of differentiation and integration of arbitrary real order.

In contrast with generally used numerical methods, where the solution is obtained step-
by-step by moving from the previous time layer to the next one, let us consider the whole
time interval of interest at once. This allows us to create a net of discretization nodes.
In the simplest case of one spatial dimension this step gives a 2D net of nodes. An
example of such discretization is shown in Fig. 4.1. The values of the unknown function
in inner nodes (shaded area in Fig. 4.1) are to be found. The values at the boundaries
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Figure 4.1: Nodes and their right-to-left, and bottom-to-top numbering.

are known: they are used later in constructing the system of algebraic equations.

The system of algebraic equations is obtained by approximating the equation in all inner
nodes simultaneously (this gives the left-hand side of the resulting system of algebraic
equations) and then utilizing the initial and boundary conditions (the values of which
appear in the right-hand side of the resulting system).

The discretization nodes in Fig. 4.1 are numbered from right to left in each time level,
and the time levels are numbered from bottom to top. We use such numbering in this
article for the clarity of presentation of our approach, although standard numberings
work equally well.

In the following sections we recall the basic tools that are necessary for the method: the
triangular strip matrices, the Kronecker product, the eliminators, and the shifters. Then
we show how they are used for approximating partial derivatives of arbitrary real order
and the equation, and how the resulting system of algebraic equations appears.

4.3 Triangular strip matrices

In this chapter we use matrices of a specific structure, which are called triangular strip
matrices [51, 59], and which have been also mentioned in [1, 18]. We will need lower
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triangular strip matrices,

LN =




ω0 0 0 0 · · · 0
ω1 ω0 0 0 · · · 0
ω2 ω1 ω0 0 · · · 0
. . .

. . .
. . .

. . . · · · · · ·
ωN−1

. . . ω2 ω1 ω0 0

ωN ωN−1
. . . ω2 ω1 ω0




, (4.8)

and upper triangular strip matrices,

UN =




ω0 ω1 ω2
. . . ωN−1 ωN

0 ω0 ω1
. . .

. . . ωN−1

0 0 ω0
. . . ω2

. . .

0 0 0
. . . ω1 ω2

· · · · · · · · · · · · ω0 ω1

0 0 0 · · · 0 ω0




, (4.9)

A lower (upper) triangular strip matrix is completely described by its first column (row).
Therefore, if we define the truncation operation, truncN (·), which truncates (in a general
case) the power series %(z),

%(z) =
∞∑

k=0

ωkz
k (4.10)

to the polynomial %N (z),

truncN (%(z))
def
=

N∑

k=0

ωkz
k = %N (z), (4.11)

then we can consider the function %(z) as a generating series for the set of lower (or
upper) triangular matrices LN (or UN ), N = 1, 2, . . .

It was shown in [51] that operations with triangular strip matrices, such as addition,
subtraction, multiplication, and inversion, can be expressed in the form of operations
with their generating series (4.10).

Among properties of triangular strip matrices it should be noticed that if matrices C
and D are both lower (upper) triangular strip matrices, then they commute:

CD = DC. (4.12)
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4.4 Kronecker matrix product

The Kronecker product A⊗B of the n×m matrix A and the p× q matrix B

A =




a11 a12 . . . a1m

a21 a22 . . . a2m
...

...
. . .

...
an1 an2 . . . anm



, B =




b11 b12 . . . b1q
b21 b22 . . . b2q
...

...
. . .

...
bp1 bp2 . . . bpq



, (4.13)

is the np×mq matrix having the following block structure:

A⊗B =




a11B a12B . . . a1mB
a21B a22B . . . a2mB

...
...

. . .
...

an1B an2B . . . anmB



. (4.14)

For example, if

A =

[
1 2
0 −3

]
, B =

[
1 2 3
4 5 6

]
, (4.15)

then

A⊗B =




1 2 3 2 4 6
4 5 6 8 10 12
0 0 0 −3 −6 −9
0 0 0 −12 −15 −18


 . (4.16)

Among many known interesting properties of the Kronecker product we would like to
recall those that are important for the subsequent sections. Namely [63],

• if A and B are band matrices, then A⊗B is also a band matrix,

• if A and B are lower (upper) triangular, then A⊗B is also lower (upper) triangular.

We will also need two specific Kronecker products, namely the products En ⊗ A and
A⊗Em, where En is an n×n identity matrix. For example, if A is a 2× 3 matrix

A =

[
a11 a12 a13

a21 a22 a23

]
(4.17)

then

E2 ⊗A =




a11 a12 a13 0 0 0

a21 a22 a23 0 0 0

0 0 0 a11 a12 a13

0 0 0 a21 a22 a23




(4.18)
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A⊗ E3 =




a11 0 0 a12 0 0 a13 0 0

0 a11 0 0 a12 0 0 a13 0

0 0 a11 0 0 a12 0 0 a13

a21 0 0 a22 0 0 a23 0 0

0 a21 0 0 a22 0 0 a23 0

0 0 a21 0 0 a22 0 0 a23




(4.19)

This illustrates that left multiplication of An×m by En creates an n× n block diagonal
matrix by repeating the matrix A on the diagonal, and that right multiplication of An×m
by Em creates a sparse matrix made of n×m diagonal blocks.

4.5 Eliminators

The suggested method requires also the use of a certain type of matrices called elimina-
tors [51], which are obtained from the N ×N unit matrix E by keeping only some of its
rows and omitting all other rows: S1 is obtained by omitting only the first row of E; S2

is obtained by omitting only the second row; S1,2 is obtained by omitting only the first
and the second row of E; and, in general, Sr1,r2,...,rk is obtained by omitting the rows
with the numbers r1, r2, . . . , rk. In case of infinite matrices, similar matrices appeared
in [10].

If A is a square N×N matrix, then the product Sr1,r2,...,rkA contains only rows of A with
the numbers different from r1, r2, . . . , rk. Similarly, the product ASTr1,r2,...,rk contains only
columns of A with the numbers different from r1, r2, . . . , rk.

The following simple example illustrates the main property of eliminators:

A =



a11 a12 a13

a21 a22 a23

a31 a32 a33


 ; S1 =

[
0 1 0
0 0 1

]
; S1A =

[
a21 a22 a23

a31 a32 a33

]
;

AST1 =



a12 a13

a22 a23

a32 a33


 ; S1AS

T
1 =

[
a22 a23

a32 a33

]
.

4.6 Shifters

For some types of approximation of differential operators (for example, one of the ap-
proximations of the symmetric Riesz derivative below in this article) and especially for
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numerical solution of differential equations of arbitrary order (integer or fractional) with
delays, it is convenient to introduce another special kind of matrices – shifters –, which
will represent discrete shifts, like, for example, delays.

Shifters (although without using this term) were used in [51] for a simple generation of
triangular strip matrices. There are shifters of two kinds: (N+1)×(N+1) matrices E+

N,p,
p = 1, . . . N , with ones on p-th diagonal above the main diagonal and zeroes elsewhere,
and matrices E−N,p, p = 1, . . . N , with ones on p-th diagonal below the main diagonal

and zeroes elsewhere. We also denote E±N,0 ≡ EN the unit matrix.

The shift of all the coefficients in the triangular strip matrix UN in the south-west
(bottom-left) direction can be easily written if we start with UN+1 and then use shifters
and eliminators:

−1UN = S1E
−
N+1,1 UN+1E

−
N+1,1 S

T
N+1 (4.20)

Similarly, the shift of all the coefficients in the triangular strip matrix UN in the north-
east (top-right) direction can be easily obtained as:

+1UN = SN+1E
+
N+1,1 UN+1E

+
N+1,1 S

T
1 (4.21)

4.7 Discretization of ordinary fractional derivatives

It follows from [51], that the left-sided Riemann-Liouville or Caputo fractional derivative
v(α)(t) = 0D

α
t v(t) can be approximated in all nodes of the equidistant discretization net

t = jτ (j = 0, 1, . . . , n) simultaneously with the help of the upper triangular strip matrix

B
(α)
n as 1 :

[
v(α)
n v

(α)
n−1 . . . v

(α)
1 v

(α)
0

]T
= B(α)

n

[
vn vn−1 . . . v1 v0

]T
(4.22)

1 In this article due to the use of the descending numbering of discretization nodes the roles of the
matrices B

(α)
n (originally for backward fractional differences) and F

(α)
n (originally for forward fractional

differences) are swapped in comparison with [51], where these matrices were introduced for the first time.

However, we would like to preserve the notation B
(α)
n for the case of the backward fractional differences

approximation and F
(α)
n for the case of the forward fractional differences approximation.
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where

B(α)
n =

1

τα




ω
(α)
0 ω

(α)
1

. . .
. . . ω

(α)
n−1 ω

(α)
n

0 ω
(α)
0 ω

(α)
1

. . .
. . . ω

(α)
n−1

0 0 ω
(α)
0 ω

(α)
1

. . .
. . .

· · · · · · · · · . . .
. . .

. . .

0 · · · 0 0 ω
(α)
0 ω

(α)
1

0 0 · · · 0 0 ω
(α)
0




(4.23)

ω
(α)
j = (−1)j

(
α

j

)
, j = 0, 1, . . . , n. (4.24)

Similarly, the right-sided Riemann-Liouville or Caputo fractional derivative v(α)(t) =

tD
α
b v(t) can be approximated in all nodes of the equidistant discretization net t =

jτ (j = 0, 1, . . . , n) simultaneously with the help of the lower triangular strip matrix

F
(α)
n :

[
v(α)
n v

(α)
n−1 . . . v

(α)
1 v

(α)
0

]T
= F (α)

n

[
vn vn−1 . . . v1 v0

]T
(4.25)

F (α)
n =

1

τα




ω
(α)
0 0 0 0 · · · 0

ω
(α)
1 ω

(α)
0 0 0 · · · 0

ω
(α)
2 ω

(α)
1 ω

(α)
0 0 · · · 0

. . .
. . .

. . .
. . . · · · · · ·

ω
(α)
n−1

. . . ω
(α)
2 ω

(α)
1 ω

(α)
0 0

ω
(α)
n ω

(α)
n−1

. . . ω
(α)
2 ω

(α)
1 ω

(α)
0




(4.26)

The symmetric Riesz derivative of order β can be approximated based on its definition
(4.5) as a combination of the approximations (4.22) and (4.25) for the left- and right-sided
Riemann-Liouville derivatives, or using the centred fractional differences approximation
of the symmetric Riesz derivative suggested recently by Ortigueira [48, 49]. The general
formula is the same:

[
v(β)
m v

(β)
m−1 . . . v

(β)
1 v

(β)
0

]T
= R(β)

m

[
vm vm−1 . . . v1 v0

]T
(4.27)

In the first case, the approximation for the left-sided Caputo derivative is taken one step
ahead, and the approximation for the right-sided Caputo derivatve is taken one step
back. This leads to the matrix
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R(β)
m =

h−α

2

[
−1Um + +1Um

]
(4.28)

In the second case (Ortigueira’s definition [48]) we have the following symmetric matix:

R(β)
m = h−β




ω
(β)
0 ω

(β)
1 ω

(β)
2 ω

(β)
3 · · · ω

(β)
m

ω
(β)
1 ω

(β)
0 ω

(β)
1 ω

(β)
2 · · · ω

(β)
m−1

ω
(β)
2 ω

(β)
1 ω

(β)
0 ω

(β)
1 · · · ω

(β)
m−2

. . .
. . .

. . .
. . . · · · · · ·

ω
(β)
m−1

. . . ω
(β)
2 ω

(β)
1 ω

(β)
0 ω

(β)
1

ω
(β)
m ω

(β)
m−1

. . . ω
(β)
2 ω

(β)
1 ω

(β)
0




(4.29)

ω
(β)
k =

(−1)k Γ(β + 1) cos(βπ/2)

Γ(β/2− k + 1) Γ(β/2 + k + 1)
, k = 0, 1, . . . ,m (4.30)

Both these approximations of symmetric Riesz derivatives give practically the same nu-
merical results and in case of numerical solution of partial fractional differential equations
lead to a well-posed matrix of the resulting algebraic system.

4.8 Discretization of partial derivatives in time and space

The simplest implicit discretization scheme for the classical diffusion equation is shown
in Fig. 4.2, where the two nodes in time direction are used for approximating the time
derivative, and the three points in spatial direction are used for the symmetric approxi-
mation of the the spatial derivative. The stencil in Fig. 4.2 involves therefore only two
time layers. If we consider fractional-order time derivative, then we have to involve all
time levels starting from the very beginning. This is shown in Fig. 4.3 for the case of
five time layers.

Similarly, if in addition to fractional-order time derivative we also consider symmetric
fractional-order spatial derivatives, then we have to use all nodes at the considered time
layer from the leftmost to the rightmost spatial discretization node. This most general
situation is shown in Fig. 4.4.

Let us consider the nodes (ih, jτ), j = 0, 1, 2, . . . , n, corresponding to all time layers at
i-th spatial discretization node. It has been shown in [51] that all values of α-th order
time derivative of u(x, t) at these nodes are approximated using the discrete analogue of
differentiation of arbitrary order:

[
u

(α)
i,n u

(α)
i,n−1 . . . u

(α)
i,2 u

(α)
i,1 u

(α)
i,0

]
= B(α)

n

[
ui,n ui,n−1 . . . ui,2 ui,1 ui,0

]T
(4.31)
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In order to obtain a simultaneous approximation of α-th order time derivative of u(x, t) in
all nodes shown in Fig. 4.1, we need to arrange all function values uij at the discretization
nodes to the form of a column vector:

unm =
[
um,n um−1,n . . . u1,n u0,n

um,n−1 um−1,n−1 . . . u1,n−1 u0,n−1

. . . . . . . . .

um,1 um−1,1 . . . u1,1 u0,1

um,0 um−1,0 . . . u1,0 u0,0

]T
(4.32)

In visual terms of Fig. 4.1, we first take the nodes of n-th time layer, then the nodes
of (n − 1)-th time layer, and so forth, and put them in this order in a vertical column
stack.

The matrix that transforms the vector Unm to the vector U
(α)
t of the partial fractional

derivative of order α with respect to time variable can be obtained as a Kronecker

product of the matrix B
(α)
n , which corresponds to the fractional ordinary derivative of

order α (recall that n is the number of time steps), and the unit matrix Em (recall that
m is the number of spatial discretization nodes):

T (α)
mn = B(α)

n ⊗ Em (4.33)

This is illustrated in Fig. 4.5, where the nodes denoted as white and gray are used to
approximate the fractional-oder time derivative at the node shown in gray.

Similarly, the matrix that transforms the vector U to the vector U
(β)
x of the partial frac-

tional derivative of order β with respect to spatial variable can be obtained as a Kro-
necker product of the unit matrix En (recall that n is the number of spatial discretization

nodes), and the matrix R
(β)
m , which corresponds to a symmetric Riesz ordinary derivative

of order β [48, 49] (recall that m is the number of time steps):

S(α)
mn = En ⊗R(β)

n (4.34)

This is also illustrated in Fig. 4.5, where the nodes denoted as black and gray (corre-
sponding to all discretization nodes from the leftmost to the rightmost one) are used to
approximate the symmetric fractional-order Riesz derivative at the same node shown in
gray.

Having these approximations for partial fractional derivatives with respect to both vari-
ables, we can immediately discretize the general form of the fractional diffusion equation
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Figure 4.2: A stencil
for integer-order deriva-
tives.

Figure 4.3: A stencil in
case of fractional time
derivative.

Figure 4.4: A stencil in
case of fractional time
and spatial derivatives.

by simply replacing the derivatives with their discrete analogs (Fig. 4.6). Namely, the
equation

C
0 D

α
t u− χ

∂βu

∂|x|β = f(x, t) (4.35)

is discretized as

{
B(α)
n ⊗ Em − χEn ⊗R(β)

m

}
unm = fnm, (4.36)

and the matrix of this system has the structure shown in Fig. 4.7.

4.9 Initial and boundary conditions

Initial and boundary conditions must be equal to zero. If it is not so, then an auxiliary
unknown function must be introduced, which satisfies the zero initial and boundary
conditions. In this way, the non-zero initial and boundary conditions moves to the
right-hand side of the equation for the new unknown function.

4.10 Implementation in MATLAB

We provide a set of MATLAB routines for implementing the suggested method [53]. The
function BCRECUR returns the values of the coefficients that appear in the fractional
difference approximations of fractional derivatives. The function BAN returns the matrix
for the backward difference approximation of the left-sided ordinary fractional deriva-
tive, the function FAN returns the matrix for approximating the right-sided ordinary
fractional derivative, and the functions RANSYM and RANORT return the matrices for
approximating the symmetric Riesz using the formulas (4.28) and (4.29), respectively.
The function ELIMINATOR returns the eliminator matrix, and the function SHIFT
implements the operations (4.20) and (4.21).
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Figure 4.5: Discretization of partial
derivatives.

Figure 4.6: Discretization of partial
derivatives and of the equation

 zoom
ed

Figure 4.7: The structure of the matrix of the resulting algebraic system.
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The use of these routines is illustrated by the demo functions FRACDIFFDEMOU, which
implements Examples 1 and 2 below, FRACDIFFDEMOY, which implements Examples
3 and 4, and FRACDIFFDEMOYDELAY, which implements Example 5.

4.11 Examples

In this section we introduce several examples illustrating the use of the suggested method.

First, we demonstrate that for the classical integer-order diffusion equation our method
gives proper results, which are in agreement with the analytical and numerical solutions
provided in [46].

Second, we obtain the numerical solution of a time-fractional diffusion equation. This
solution is in perfect agreement with the numerical solution obtained in the very recent
work [55] by a different approach.

Then we consider fractional diffusion equation with spatial fractional derivative. The
fractional derivative with respect to the spatial variable is considered as a Riesz fractional
derivative.

After that, we show the results of numerical solution of a general fractional diffusion
equation, where time and spatial derivatives are both of fractional order – the time frac-
tional derivative is a left-sided Riemann–Liouville derivative, and the spatial fractional
derivative is a Riesz fractional derivatie.

Finally, we demonstrate that consideration of partial differential equations with frac-
tional derivatives and delays is equally simple in the framework of the suggested general
approach.

In all examples, the spatial interval is finite.

4.11.1 Example 1: Classical diffusion equation

Let us start with the classical problem [46]:

∂u

∂t
=
∂2u

∂x2
(4.37)

u(0, t) = 0, u(1, t) = 0 (4.38)

u(x, 0) = 4x(1− x) (4.39)
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To reduce this problem to a problem with zero initial conditions (the boundary conditions
are already zero), let us introduce an auxiliary function

y(x, t) = u(x, t)− u(x, 0) (4.40)

It follows from (4.40) and (4.37)–(4.39) that the function y(x, t) must satisfy

∂y

∂t
− ∂2y

∂x2
= f(x, t), (with f(x, t) ≡ 8) (4.41)

y(0, t) = 0, y(1, t) = 0; y(x, 0) = 0. (4.42)

The problem (4.41)–(4.42) can be discretized using the described method (see Fig. 4.6),
which gives

{
B(1)
n ⊗ Em − En ⊗R(2)

m

}
ynm = fnm (4.43)

where m is the number of spatial discretization intervals and n is the number of time
steps.

To obtain the system for finding the unknown values of ynm for the inner nodes of the
discretization net, we have to use the initial and boundary conditions. Since they all are
zero, it is sufficient to delete the corresponding rows and columns in the system (4.43),
which is easily done with the help of eliminators.

The result of computation of y(x, t) for the spatial step h = 0.1 and the time step
τ = h2/6 is shown in Fig. 4.8 (on the left) for n = 37 time steps. These values were
chosen for the purpose of comparison with the results from [46]. Using (4.40), we can
compute u(x, t), and the result is shown in Fig. 4.8 (on the right). The values of u(x, t)
are in perfect agreement with the values given in [46] for the same values of h, τ , and
n.

4.11.2 Example 2: Diffusion equation with time fractional derivative

Now let us consider the equation with the Caputo fractional-order time derivative:

C
0D

α
t u =

∂2u

∂x2
(4.44)

u(0, t) = 0, u(1, t) = 0 (4.45)
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Figure 4.8: Solutions y(x, t) (left) and u(x, t) (right) of Example 1, with the same values
of parameters as in [46].

u(x, 0) = 4x(1− x) (4.46)

Since the Caputo derivative of a constant is zero [2, 50], for the auxiliary function y(x, t)
defined by equation (4.40) we obtain a problem with zero initial and boundary conditions
similar to (4.41)–(4.42):

C
0D

α
t y −

∂2y

∂x2
= f(x, t), (with f(x, t) ≡ 8) (4.47)

y(0, t) = 0, y(1, t) = 0; y(x, 0) = 0 (4.48)

This problem can be discretized in the same manner as the previous one (refer to
Fig. 4.6), with the only difference that instead of the first-order time derivative we
have now a derivative of order α:

{
B(α)
n ⊗ Em − En ⊗R(2)

m

}
ynm = fnm (4.49)

where m is the number of spatial discretization intervals and n is the number of time
steps.

As above, the use of the zero initial conditions means that the corresponding rows and
columns in the system (4.49) are removed with the help of eliminators.

The results of computations of y(x, t) and then u(x, t) for α = 1, α = 0.7, α = 0.5 with
h = 0.05 and τ = h2/6 are shown in Fig. 4.9. The structure of the matrix is the same
as shown in Fig. 4.7.

Obviously, for α = 1 we have the classical case and the same plots as in Fig. 4.8,
and therefore Example 1 is a particular case of Example 2. As α goes to zero, the
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function y(x, t) slowly tends to u(x, 0) = 4x(1− x) for all t. This is also not a surprize,
because, indeed, for α = 0 the function y(x, t) does not depend on t and therefore must
satisfy

y′′(x) + 8 = 0, y(0) = y(1) = 0,

which has the solution y(x) = 4x(1− x).

It should be noted that almost the same problem as (4.44)–(4.46) was numerically solved
in [55] using a very different approach. The initial condition in [55] was u(x, 0) = x(1−x).
Scaling the plots in figures 1 and 2 in [55] by the factor of 4, we obtain the plots which are
practically identical with our results for u(x, t) shown in Fig. 4.9. For this comparison
we considered the shorter interval 0 ≤ t ≤ 0.02 used in [55].

4.11.3 Example 3: Diffusion equation with spatial fractional deriva-
tive

Let us now focus on the role of spatial fractional derivative. For clarity, let us directly
write the following analog of the problem (4.41)–(4.42) for determining the function
y(x, t):

∂y

∂t
− ∂βy

∂|x|β = f(x, t), (with f(x, t) ≡ 8) (4.50)

y(0, t) = 0, y(1, t) = 0; y(x, 0) = 0. (4.51)

where 1 < β ≤ 2. The right-hand side is the same as in (4.41), but instead of second
order spatial derivative we deal with the Riesz-Caputo fractional derivative.

The problem (4.50)–(4.51) can be discretized using the described method (see Fig. 4.6),
which gives

{
B(1)
n ⊗ Em − En ⊗R(β)

m

}
ynm = fnm (4.52)

where m is the number of spatial discretization intervals and n is the number of time
steps, and the corresponding rows and columns in the system (4.52) are removed with
the help of eliminators.

The results of computations for four different values of β are shown in Fig. 4.10.
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Figure 4.9: Solutions y(x, t) (left column) and u(x, t) (right column) of Example 2, for
α = 1 (top), α = 0.7 (middle) and α = 0.5 (bottom), with spatial step h = 0.05 and
time step τ = h2/6.
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Figure 4.10: Solutions y(x, t) (left column) of Example 3, for β = 2 (top-left), β = 1.7
(top-right), β = 1.4 (bottom-left), and β = 1.1 (bottom-right), with spatial step h = 0.05
and time step τ = h2/6.

4.11.4 Example 4: General fractional diffusion equation

Now we can illustrate that the method works also in the case when both derivatives are
of fractional order. Let us consider the most general situation:

C
0D

α
t y −

∂βy

∂|x|β = f(x, t), (with f(x, t) ≡ 8) (4.53)

y(0, t) = 0, y(1, t) = 0; y(x, 0) = 0. (4.54)

The right-hand side is the same as in (4.41) and (4.50), but now both derivatives are
allowed to be of non-integer order.

The problem (4.53)–(4.54) can be discretized using the described method (see Fig. 4.6),
which gives

{
B(α)
n ⊗ Em − En ⊗R(β)

m

}
ynm = fnm (4.55)
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Figure 4.11: Solutions y(x, t) of Example 4, for α = 0.7 and β = 1.4 (left), α = 0.7
and β = 1.8 (middle), α = 0.7 β = 2 (right), with spatial step h = 0.05 and time step
τ = h2/6.

where m is the number of spatial discretization intervals and n is the number of time
steps, and the corresponding rows and columns in the system (4.55) are as in all previous
examples removed with the help of eliminators.

The results of computations for some sample combinations of non-integer orders α and
different values of β are shown in Fig. 4.11.

4.11.5 Example 5: Fractional diffusion equation with delay

Finally, let us consider the equation with two Caputo fractional-order time derivatives, of
which one is with delay δ (we do not go into the physical interpretation of this equation,
because physical interpretation of a delayed fractional derivative is not known so far, but
use it for demonstrating how broad can be the field of application of our approach):

1

2

{
C
0D

α
t y + C

0D
γ
t−δy

}
− ∂βy

∂|x|β = f(x, t) (with f(x, t) ≡ 8) (4.56)

y(0, t) = 0, y(1, t) = 0 y(x, 0) = 0 (4.57)

Obviously, for γ = α and δ = 0 we have the equation considered in Example 2. Let us
select the discretization step so that δ is a multiple of the time step τ : δ = kτ . Then the
problem (4.56)–(4.57) can be discretized using the described method (see Fig. 4.6 and
the equation (4.21)), which gives:

{1

2

(
B(α)
n ⊗ Em + +kB

(γ)
n ⊗ Em

)
− En ⊗R(β)

m

}
ynm = fnm (4.58)

+kB
(γ)
n = Sn+1,...,n+k E

+
n+k,k B

(γ)
n+k E

+
n+k,k S

T
1,...,k
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where, as above, m is the number of spatial discretization intervals and n is the number
of time steps, k is the number of time steps corresponding to the delay δ, and the
appropriate rows and columns in the system (4.58) are as in all previous examples are
to removed with the help of eliminators.

The results of computations for a sample combination of non-integer orders α, β and γ
and some delays δ represented by the parameter k are shown in Fig. 4.12.
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Figure 4.12: Solutions y(x, t) (left column) of Example 5, for α = 0.9, γ = 0.8, β = 1.9,
for delays δk = kτ , k = 6, 12, 24, 36.

4.12 Chapter summary

The suggested method represents a unifying approach to numerical solution of partial
differential equations of both integer and non-integer order, including equations with
delays.

For the sake of clarity, in this article we considered the case of one spatial variable.
However, the suggested method can be easily extended to the case of two and three
spatial variables by repeatedly applying the triangular strip matrix representations of
fractional-order operators in combination with the Kronecker matrix product.

The problems considered in this article are linear, so the resulting systems of algebraic
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equations are linear as well. However, the suggested approach can be extended to the
case of nonlinear problems, too.

The suggested method can be used also for solving partial fractional differential equations
appearing from the Laplace equation by replacing second order spatial derivatives with
fractional Riesz derivatives.

The suggested method can be used also for partial fractional FDEs of variable and
distributed order(s) and for equations with delays.

Appendix: sample evaluation of the symmetric Riesz frac-
tional derivative

For φ(x) = x(1 − x) and the order of differentiation 1 < β < 2 the left-sided Riemann-
Liouville fractional derivative (4.6) of the function φ(x) is

0D
β
xφ(x) =

x1−β

Γ(2− β)
− 2x2−β

Γ(3− β)
. (4.59)

Similarly, the right-sided Riemann-Liouville derivative (4.7) of φ(x) is

xD
β
1φ(x) =

(1− x)1−β

Γ(2− β)
− 2 (1− x)2−β

Γ(3− β)
. (4.60)

Therefore, the symmetric Riesz fractional derivative (4.5) of the function φ(x) is:

dβφ

d|x|β =
1

2

{
0D

β
xφ(x) + xD

β
1φ(x)

}
(4.61)

=
x1−β + (1− x)β

2 Γ(2− β)
− x2−β + (1− x)2−β

Γ(3− β)
. (4.62)
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Chapter 5

Matrix approach for differential
equations of distributed order

5.1 Introduction

In this chapter we present a general approach to numerical solution to discretization of
distributed-order derivatives and integrals, and to numerical solution of ordinary and
partial differential equations of distributed order.

This approach is based on the matrix form representation of discretized fractional oper-
ators of constant order introduced for the first time in [54] and extended further in the
works [60, 58, 65, 56].

This approach unifies the numerical differentiation of arbitrary (including integer) order
and the n-fold integration, using the so-called triangular matrices. Applied to numerical
solution of differential equations, it also unifies the solution of integer- and fractional-
order partial differential equations. The matrix approach lead to significant simplifica-
tion of the numerical solution of partial differential equations as well, and it is general
enough to deal with different types of partial fractional differential equations.

In this chapter we extend the range of applicability of the matrix approach to dis-
cretization of distributed-order derivatives and integrals, and to numerical solution of
distributed-order differential equations (both ordinary and partial).

Since the distributed-order operators are represented by integrals of weighted constant-
order operators, we necessarily first introduce the matrix approach to discretization
of constant order and then demonstrate how this method can be extended to allow
numerical solution of distributed-order differential equations.

97
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5.2 Triangular Strip Matrices

We use matrices of a specific structure, which are called triangular strip matrices [54, 68],
and which have been also mentioned in [1, 22]. We will need lower triangular strip
matrices ,

LN =




ω0 0 0 0 · · · 0
ω1 ω0 0 0 · · · 0
ω2 ω1 ω0 0 · · · 0
. . .

. . .
. . .

. . . · · · · · ·
ωN−1

. . . ω2 ω1 ω0 0

ωN ωN−1
. . . ω2 ω1 ω0




, (5.1)

and upper triangular strip matrices ,

UN =




ω0 ω1 ω2
. . . ωN−1 ωN

0 ω0 ω1
. . .

. . . ωN−1

0 0 ω0
. . . ω2

. . .

0 0 0
. . . ω1 ω2

· · · · · · · · · · · · ω0 ω1

0 0 0 · · · 0 ω0




, (5.2)

A lower (upper) triangular strip matrix is completely described by its first column (row).
Therefore, if we define the truncation operation, truncN (·), which truncates (in a general
case) the power series %(z),

%(z) =
∞∑

k=0

ωkz
k (5.3)

to the polynomial %N (z),

truncN (%(z))
def
=

N∑

k=0

ωkz
k = %N (z), (5.4)

then we can consider the function %(z) as a generating series for the set of lower (or
upper) triangular matrices LN (or UN ), N = 1, 2, . . .

It was shown in [54] that operations with triangular strip matrices, such as addition,
subtraction, multiplication, and inversion, can be expressed in the form of operations
with their generating series (5.3).

Among properties of triangular strip matrices it should be noticed that if matrices C
and D are both lower (upper) triangular strip matrices, then they commute:

CD = DC. (5.5)
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5.3 Kronecker Matrix Product

The Kronecker product A⊗B of the n×m matrix A and the p× q matrix B

A =




a11 a12 . . . a1m

a21 a22 . . . a2m
...

...
. . .

...
an1 an2 . . . anm



, B =




b11 b12 . . . b1q
b21 b22 . . . b2q
...

...
. . .

...
bp1 bp2 . . . bpq



, (5.6)

is the np×mq matrix having the following block structure:

A⊗B =




a11B a12B . . . a1mB
a21B a22B . . . a2mB

...
...

. . .
...

an1B an2B . . . anmB



. (5.7)

For example, if

A =

[
1 2
0 −3

]
, B =

[
1 2 3
4 5 6

]
, (5.8)

then

A⊗B =




1 2 3 2 4 6
4 5 6 8 10 12
0 0 0 −3 −6 −9
0 0 0 −12 −15 −18


 . (5.9)

Among many known interesting properties of the Kronecker product we would like to
recall those that are important for the subsequent sections. Namely [72],

• if A and B are band matrices, then A⊗B is also a band matrix,

• if A and B are lower (upper) triangular, then A⊗B is also lower (upper) triangular.

We will also need two specific Kronecker products, namely the products En ⊗ A and
A⊗Em, where En is an n×n identity matrix. For example, if A is a 2× 3 matrix

A =

[
a11 a12 a13

a21 a22 a23

]
(5.10)

then

E2 ⊗A =




a11 a12 a13 0 0 0

a21 a22 a23 0 0 0

0 0 0 a11 a12 a13

0 0 0 a21 a22 a23



, (5.11)
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A⊗ E3 =




a11 0 0 a12 0 0 a13 0 0

0 a11 0 0 a12 0 0 a13 0

0 0 a11 0 0 a12 0 0 a13

a21 0 0 a22 0 0 a23 0 0

0 a21 0 0 a22 0 0 a23 0

0 0 a21 0 0 a22 0 0 a23




. (5.12)

This illustrates that left multiplication of An×m by En creates an n× n block diagonal
matrix by repeating the matrix A on the diagonal, and that right multiplication of An×m
by Em creates a sparse matrix made of n×m diagonal blocks.

5.4 Discretization of Ordinary Fractional Derivatives of
Constant Order

It follows from [54], that the left-sided Riemann-Liouville or Caputo fractional derivative
v(α)(t) = 0Dα

t v(t) can be approximated in all nodes of the equidistant discretization net
t = jτ (j = 0, 1, . . . , n) simultaneously with the help of the upper triangular strip matrix

B
(α)
n as 1

[
v(α)
n v

(α)
n−1 . . . v

(α)
1 v

(α)
0

]T
= B(α)

n

[
vn vn−1 . . . v1 v0

]T
(5.13)

where

B(α)
n =

1

τα




ω
(α)
0 ω

(α)
1

. . .
. . . ω

(α)
n−1 ω

(α)
n

0 ω
(α)
0 ω

(α)
1

. . .
. . . ω

(α)
n−1

0 0 ω
(α)
0 ω

(α)
1

. . .
. . .

· · · · · · · · · . . .
. . .

. . .

0 · · · 0 0 ω
(α)
0 ω

(α)
1

0 0 · · · 0 0 ω
(α)
0




, (5.14)

ω
(α)
j = (−1)j

(
α

j

)
, j = 0, 1, . . . , n. (5.15)

1 Here due to the use of the descending numbering of discretization nodes the roles of the matrices B
(α)
n

(originally for backward fractional differences) and F
(α)
n (originally for forward fractional differences) are

swapped in comparison with [54], where these matrices were introduced for the first time. However, we

would like to preserve the notation B
(α)
n for the case of the backward fractional differences approximation

and F
(α)
n for the case of the forward fractional differences approximation.
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Similarly, the right-sided Riemann-Liouville or Caputo fractional derivative
v(α)(t) = tD

α
b v(t) can be approximated in all nodes of the equidistant discretization

net t = jτ (j = 0, 1, . . . , n) simultaneously with the help of the lower triangular strip

matrix F
(α)
n :

[
v(α)
n v

(α)
n−1 . . . v

(α)
1 v

(α)
0

]T
= F (α)

n

[
vn vn−1 . . . v1 v0

]T
, (5.16)

F (α)
n =

1

τα




ω
(α)
0 0 0 0 · · · 0

ω
(α)
1 ω

(α)
0 0 0 · · · 0

ω
(α)
2 ω

(α)
1 ω

(α)
0 0 · · · 0

. . .
. . .

. . .
. . . · · · · · ·

ω
(α)
n−1

. . . ω
(α)
2 ω

(α)
1 ω

(α)
0 0

ω
(α)
n ω

(α)
n−1

. . . ω
(α)
2 ω

(α)
1 ω

(α)
0




. (5.17)

The symmetric Riesz derivative of order β can be approximated based on its defini-
tion as a half-sum of the approximations (5.13) and (5.16) for the left-and right-sided
Riemann-Liouville derivatives. We, however, prefer using the centered fractional differ-
ences approximation of the symmetric Riesz derivative suggested recently by Ortiguieira
[51, 52], which gives

[
v(β)
m v

(β)
m−1 . . . v

(β)
1 v

(β)
0

]T
= R(β)

m

[
vm vm−1 . . . v1 v0

]T
(5.18)

with the following symmetric matrix:

R(β)
m = h−β




ω
(β)
0 ω

(β)
1 ω

(β)
2 ω

(β)
3 · · · ω

(β)
m

ω
(β)
1 ω

(β)
0 ω

(β)
1 ω

(β)
2 · · · ω

(β)
m−1

ω
(β)
2 ω

(β)
1 ω

(β)
0 ω

(β)
1 · · · ω

(β)
m−2

. . .
. . .

. . .
. . . · · · · · ·

ω
(β)
m−1

. . . ω
(β)
2 ω

(β)
1 ω

(β)
0 ω

(β)
1

ω
(β)
m ω

(β)
m−1

. . . ω
(β)
2 ω

(β)
1 ω

(β)
0




, (5.19)

ω
(β)
k =

(−1)k Γ(β + 1) cos(βπ/2)

Γ(β/2− k + 1) Γ(β/2 + k + 1)
, k = 0, 1, . . . ,m. (5.20)
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Figure 5.1: Visualization of numerical evaluation of distributed-order derivatives with
the help of the matrix approach.

5.5 Discretization of Ordinary Derivatives of Distributed
Order

Using the matrix approach, the discretization of a derivative of distributed order is very
easy. Let us discretize the interval [a, b], in which the order α is changing, using the grid
with the steps ∆αk, not necessarily equidistant. Then we have

0D
w(α)
t f(t) =

γ2∫

γ1

w(α) 0Dα
t f(t) dα ≈

p∑

k=1

w(αk)
(

0Dαk
t f(t)

)
∆αk (5.21)

≈
p∑

k=1

w(αk)
(
Bαk
n fn

)
∆αk =

( p∑

k=1

Bαk
n w(αk) ∆αk

)
fn. (5.22)

In other words, the discrete analog of distributed-order differentiation is given by the

matrix that we will further denote as B
w(α)
n,p ,

Bw(α)
n,p =

p∑

k=1

Bαk
n w(αk) ∆αk, (5.23)

and we can obtain the values of the distributed-order derivative at all points tj
(j = 1, . . . , n) at once using the following relationship:

0D
w(α)
t f(t) ≈ Bw(α)

n,p fn. (5.24)

In the notation B
w(α)
n,p the order w(α) means the function describing the distribution of

orders α in the interval [γ1, γ2], and the second index p is the number of discretization
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steps for α; the first index n, as above, is the number of discretization steps with respect
to the variable t.

The visualization of the formula (5.22) is shown in Fig. 5.1. On each k-th layer of
the shown “cake” the input vector fn of the values of the function f(t) at the nodes
tj is multiplied by the matrix Bαk

n and gives the output vector of the values of the
fractional derivative 0Dαk

t at the same nodes tj . Those vectors 0Dαk
t are then multiplied

by weights w(αk) and discretization steps ∆αk, and the final summation with respect
to k (“summation across the layers of orders”) gives the vector of the distributed-order

derivative 0D
w(α)
t evaluated at the nodes tj (j = 1, . . . , n).

5.6 Discretization of Partial Derivatives of Distributed Or-
der

In contrast with generally used numerical methods, where the solution is obtained step-
by-step by moving from the previous time layer to the next one, let us consider the whole
time interval of interest at once. This allows us to create a net of discretization nodes.
In the simplest case of one spatial dimension this step gives a 2D net of nodes. An
example of such discretization is shown in Fig. 5.2. The values of the unknown function
in inner nodes (shaded area in Fig. 5.2) are to be found. The values at the boundaries
are known, they are used later in constructing the system of algebraic equations.

The system of algebraic equations is obtained by approximating the equation in all inner
nodes simultaneously (this gives the left-hand side of the resulting system of algebraic
equations) and then utilizing the initial and boundary conditions (the values of which
appears in the right-hand side of the resulting system).

The discretization nodes in Fig. 5.2 are numbered from right to left in each time level,
and the time levels are numbered from bottom to top. We use such numbering for
the clarity of presentation of our approach, although standard numberings work equally
well.

The simplest implicit discretization scheme used for numerical solution of partial differ-
ential equations, like diffusion equation, is shown in Fig. 5.3, where the two nodes in time
direction are used for approximating the time derivative, and the three points in spatial
direction are used for the symmetric approximation of the the spatial derivative. The
stencil in Fig. 5.3 involves therefore only two time layers. If we consider fractional-order
time derivative or distributed-order derivative, then we have to involve all time levels
starting from the very beginning. This is shown in Fig. 5.4 for the case of five time
layers.

Similarly, if in addition to time derivative of distributed order or of fractional order we
also consider symmetric spatial derivatives of distributed order or fractional order, then
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Figure 5.2: Nodes and their right-to-left, and bottom-to-top numbering.

we have to use all nodes at the considered time layer. This most general situation is
shown in Fig. 5.5.

Let us consider the nodes (ih, jτ), j = 0, 1, 2, . . . , n, corresponding to all time layers at
i-th spatial discretization node. Similarly to the case of constant fractional orders [54],
all values of α-th order time derivative of u(x, t) at these nodes are approximated using
the discrete analogue of distributed-order differentiation:

[
u

(w(α))
i,n u

(w(α))
i,n−1 . . . u

(w(α))
i,2 u

(w(α))
i,1 u

(w(α))
i,0

]
= Bw(α)

n,p

[
ui,n ui,n−1 . . . ui,2 ui,1 ui,0

]T
.

(5.25)

In order to obtain a simultaneous approximation of α-th order time derivative of u(x, t) in
all nodes shown in Fig. 5.2, we need to arrange all function values uij at the discretization
nodes to the form of a column vector:

Unm =
[
um,n um−1,n . . . u1,n u0,n

um,n−1 um−1,n−1 . . . u1,n−1 u0,n−1

. . . . . . . . .

um,1 um−1,1 . . . u1,1 u0,1

um,0 um−1,0 . . . u1,0 u0,0

]T
. (5.26)
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In visual terms of Fig. 5.2, we first take the nodes of n-th time layer, then the nodes
of (n − 1)-th time layer, and so forth, and put them in this order in a vertical column
stack.

The matrix that transforms the vector Unm to the vector U
w(α)
t of the partial derivative

of distributed order w(α) with respect to time variable can be obtained as a Kronecker

product of the matrix B
w(α)
n,p , which corresponds to the ordinary derivative of distributed

order w(α) (recall that n is the number of time steps), and the unit matrix Em (recall
that m is the number of spatial discretization steps):

Tw(α)
mn = Bw(α)

n,p ⊗ Em. (5.27)

This is illustrated in Fig. 5.6, where the nodes denoted as white and grey are used to
approximate the fractional-order time derivative at the node shown in grey.

Similarly, the matrix that transforms the vector U to the vector U
ϕ(β)
x of the derivative

of distributed order ϕ(β) with respect to spatial variable can be obtained as a Kronecker
product of the unit matrix En (recall that n is the number of spatial discretization

nodes), and the matrix R
ϕ(β)
m,p , which corresponds to symmetric Riesz ordinary derivative

of distributed order ϕ(β) (recall that m is the number of time steps):

Sϕ(β)
mn = En ⊗Rϕ(β)

n,p . (5.28)

This is also illustrated in Fig. 5.6, where the nodes denoted as black and grey are used
to approximate the symmetric fractional-order Riesz derivative at the same node shown
in grey.

Having these approximations for partial fractional derivatives with respect to both vari-
ables, we can immediately discretize, for example, the diffusion equation in terms of
time- and space-derivatives of distributed order by simply replacing the derivatives with
their discrete analogs (Fig. 5.7). Namely, the equation

0D
w(α)
t u− χ ∂ϕ(β)u

∂|x|ϕ(β)
= f(x, t) (5.29)

is discretized as {
Bw(α)
n,p ⊗ Em − χEn ⊗Rϕ(β)

m,p

}
unm = fnm. (5.30)

5.7 Initial and Boundary Conditions for Using the Matrix
Approach

It is always emphasized in case of the matrix approach to solution of differential equations
that initial and boundary conditions must be equal to zero. If it is not so, then an
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auxiliary unknown function must be introduced, which satisfies the zero initial and
boundary conditions. In this way, the non-zero initial and boundary conditions moves
to the right-hand side of the equation for the new unknown function. After obtaining
the solution for the auxiliary function, the backward substitution gives the solution of
the original equation.

5.8 Implementation in MATLAB

A set of MATLAB routines implementing the described method is provided for download
[55]. Those routines require the previously published toolbox for numerical solution of
differential equations of arbitrary (fractional) constant order [57].

The function DOBAN returns the matrix for the backward difference approximation
of the left-sided distributed-order derivative, the function DOFAN returns the matrix
for approximating the right-sided distributed-order derivative, DORANORT return the
matrix for approximating the symmetric Riesz distributed-order derivative.

The use of these routines is illustrated by the demo functions included in the tool-
box.
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5.9 Numerical Examples

The use of the matrix approach for numerical solution of differential equations with
derivatives of distributed orders is illustrated below on three examples that generalize
the standard frequently used models of the applied fractional calculus. The relaxation,
oscillation, and diffusion equations play extremely important role in numerous fields of
science and engineering, and, because of their importance, they are also often used for
benchmarking new methods and algorithms.

To the knowledge of the authors, these are the first examples of numerical solution of
such distributed-order problems.

It is worth mentioning that existence and uniqueness of solutions of such types of
distributed-order differential equations in the particular case of w(α) = 1 were investi-
gated by Pskhu [61].

5.9.1 Example 1: Distributed-order relaxation

Let us consider the following initial value problem for the distributed-order relaxation
equation:

0D
w(α)
t x(t) + bx(t) = f(t), (5.31)

x(0) = 1, (5.32)

where the distribution of the orders α is given by the function w(α) = 6α (1 − α),
(0 ≤ α ≤ 1). To be able to use the matrix approach, we need zero initial condition.
Introducing an auxiliary function u(t),

x(t) = u(t) + 1

gives the following initial value problem for the new unknown u(t):

0D
w(α)
t u(t) + bu(t) = f(t)− b, (5.33)

u(t) = 0. (5.34)

The discretization of equation (5.33) gives the following system of algebraic equations
in the matrix form: (

Bw(α)
n,p + bEn

)
Un = Fn, (5.35)

where Un is the vector of the values of u(t) at the discretization nodes, and Fn is the
vector of the values of the right-hand side, f(t)−B, at the same nodes; En is the identity
matrix. The Matlab code for solving Example 1 is in the Appendix, and the results of
computations are shown in Fig. 5.8.
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Figure 5.8: Solution of the distributed-
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Figure 5.9: Solution of the
distributed-order oscillator equa-
tion (Bagley-Torvik equation) with
w(α) = 6α(1− α).

5.9.2 Example 2: Distributed-order oscillator

Let us consider the Bagley-Torvik equation with a damping term described by a distributed-
order derivative. When the damping term is of constant (integer or non-integer) order,
this equation is also called the fractional oscillator equation.

ay′′(t) + by(w(α))(t) + cy(t) = f(t), f(t) =

{
8, (0 ≤ t ≤ 1)
0, (t > 1)

, (5.36)

y(0) = y′(0) = 0. (5.37)

Similarly to Example 1, we just replace continuous operators with their corresponding
discrete analogs in the form of matrices, and the known and unknown function by the
vectors of their values in the discretization nodes. This gives the following algebraic
system in the matrix form:

(
aB2

n + bBw(α)
n,p + c

)
Yn = Fn. (5.38)

The Matlab code for solving Example 2 is in the Appendix, and the results of computa-
tions are shown in Fig. 5.9.

5.9.3 Example 3: Distributed-order diffusion

The last example that is provided in this section is an initial value problem for a partial
differential equation with a derivative of distributed-order w(α) with respect to time
variable t and with a constant-order symmetric fractional derivative of order β with
respect to the spatial variable x:
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Figure 5.10: Solution of distributed-
order diffusion equation with w1(α) =
2(1− α).

Figure 5.11: Solution of distributed-
order diffusion equation with w2(α) =
2α.

0D
w(α)
t y − ∂βy

∂|x|β = f(x, t) (5.39)

y(0, t) = 0, y(1, t) = 0; y(x, 0) = 0. (5.40)

In order to be able to check for a “backward compatibility” of the obtained solution with
the solution of the classical diffusion equation and with the solution of the constant-order
fractional diffusion equation, we take f(x, t) = 8.

Again, we just replace continuous operators with their corresponding discrete analogs
in the form of matrices, and the known and unknown function by the vectors of their
values in the discretization nodes. This gives the following algebraic system in the matrix
form: (

Bw(α)
n,p ⊗ Em − En ⊗Rβm

)
Ynm = Fnm. (5.41)

Here we demonstrate that distributed-order derivatives, integer-order derivatives and
fractional-order derivatives can appear in the same equations and are treated in the
same manner for the purpose of numerical solution using the matrix approach.

The Matlab code for solving Example 3 is also provided in the Appendix. The results
of computations are shown in Fig. 5.10 for the case w1(α) = 2(1 − α), and in Fig. 5.11
for the case w2(α) = 2α. Although we have

1∫

0

w1(α) dα =

1∫

0

w2(α) dα = 1,

the obtained solutions are different because of different weights assigned by the functions
w1(α) and w2(α) to the fractional derivatives of orders close to 0 and 1.
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5.10 Chapter Summary

In this chapter we introduced the extension the matrix approach to the case of distributed-
order derivatives. The matrix approach provides an extremely convenient language and
framework for discretization of differentiation of any order – integer, fractional, and
distributed order. Using discrete analogs of all those forms of differentiation, one can
easily discretize differential equations with all possible combinations of derivatives –
classical integer-order derivatives, left- and right-sided fractional order derivatives, sym-
metric fractional derivatives, and left-sided, right-sided, and symmetric distributed-order
derivatives.

We have provided examples of solution of the three important types of problems that are
important for applications and appear in many fields of science and engineering. The
Matlab code provided in the Appendix demonstrates how easy it is using the matrix
approach.
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Chapter 6

Matrix approach for
non-equidistant grids and variable
step length

6.1 Introduction

The results that we present in this article were motivated by two important challenges
in applied numerical methods of fractional calculus.

First, until recent times, the fractional derivatives were discretized using equidistant
nodes. This has roots in the famous Grünwald-Letnikov definition of fractional-order
differentiation, which is based on generalization of finite differences defined on an equidis-
tant grid, and which gives the simplest and very efficient approximation for numerical
evaluation of fractional derivatives. This Grünwald-Letnikov-based approach to dis-
cretization of fractional derivatives had so strong impact on the way of thinking in the
fractional calculus, that even fractional integrals were routinely discretized on equidis-
tant grids, too. However, it is clear that for fractional integrals it was not a necessity
at all. On the other hand, it was unclear what one could do with approximation of
fractional integrals on non-equidistant grids, if one wants to have a uniform approach to
discretization of both fractional derivatives and fractional integrals.

Second, solution of fractional differential equations in large time intervals is a com-
putational problem due to the fact, that the number of points taken into account in
computations grows with the growing value of the time variable. This is caused by the
non-local character of fractional-order differentiation. So far, the only aid in this respect
was the “short memory principle” [10]. Methods known from classical numerical solu-
tions of integer-order differential equations, especially variable step length techniques,
were not available for fractional differential equations.

116
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The systematic and continuous development of the “matrix approach” [11] allowed us to
find some answers to both challenges, and in this article we present them as two mutually
related methods for solving problems of discrete fractional calculus on non-uniformly
spaced discretization grids. Moreover, we extend this approach to distributed-order
operators and distributed-order differential equations.

We start with demonstrating how the matrix approach can be extended to numerical
evaluation of fractional-order integrals and derivatives on non-equidistant grids, and
how fractional differential equations with constant-order derivatives can be solved on
such grids. This finally unifies the discretization of fractional derivatives and fractional
integrals on arbitrary (equidistant and non-equidistant) grids.

After that we make the next step and extend the matrix approach to discretization of
distributed-order operators and to numerical solution of distributed-order differential
equations.

Then we move the focus on using the variable step length for solving fractional differential
equations. In this article we for the first time present the method that we call “the
method of large steps”. We provide the general framework and illustrate this method
by a numerical example that, for verification purposes, allows easy exact solution as
well.

Since each “large step” consists of a set of “small steps”, it can be done using the
matrix approach, and the “small steps” can be equidistant or non-equidistant. This is
illustrated by included little pieces of Matlab code using our publicly available toolbox
[13, 15].

The methods presented in this article finally allow fractional-order differentiation and
integration of non-uniformly sampled signals, and the development of variable step length
techniques for solving fractional differential equations (ordinary and partial).

The standard basic notation and basic definitions of fractional derivatives and fractional
integrals can be found in [10, 17, 7].

6.2 Fractional-order integration and differentiation on non-
equidistant grids

Although equidistant grids are used in application frequently, in many situations the
use of non-equidistant grids brings notable advantages. For example, many numeri-
cal methods for solving differential equations use variable time step technique, so the
time step can increase or decrease depending on how rapidly the resulting solution is
changing.

Up to now, the fractional derivatives were discretized using equidistant nodes. This was,
of course, due to the famous Grünwald-Letnikov definition of fractional-order differen-
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tiaton, which is based on generalization of finite differences defined on an equidistant
grid.

The matrix approach to discretization of integrals and derivatives of arbitrary real order,
developed by Podlubny [11, 14], allows us to generalize discretization of fractional-order
integrals and derivatives to non-equidistant grids.

The idea is to create first a discretization matrix Iα for integration of order α. After the
matrix Iα for discrete fractional integration on non-equidistant grid is obtained, we can
easily derive the matrix Dα for discretization of fractional order derivatives by matrix
inversion:

Dα = (Iα)−1 .

In the simplest case, the function under differentiation can be approximated by a piece-
wise constant function, and for the non-equidistant discretization nodes tk (k = 1, . . . , N),
the coefficients of the lower triangular matrix Iα can be evaluated as

Ik,j =
(tk − tj−1)α − (tk − tj)α

Γ(α+ 1)
, (6.1)

j = 1, . . . , k; k = 1, . . . , N. (6.2)

Other formulas for numerical integration will give other expressions for the coefficients
Ik,j ; however, as we demonstrate below, even this simple approximation works well.

In the case of non-equidistant nodes, however, the matrices Iα and Dα are not strip
matrices, although for one-sided fractional integrals and derivatives they are still trian-
gular.

In the examples given below we use non-equidistant nodes generated with random steps.
We generate N random points between 0 and 1, sort them in ascending order, and then
scale to the considered interval of length L. After that, we replace the first and the
last randomly generated node with the exact left and right bounds of the considered
interval.

6.2.1 Example 1: Evaluation of integer-order integrals and deriva-
tives

Let us consider the function y = sin(t). In Fig. 6.1, its exact first-order derivative (dashed
line) and its exact (dotted ine) one-fold integral (dash-dotted line) are depicted.

The results of numerical differentiation (solid line) and numerical integration (dash-
dotted line) of the same function using the matrix approach on a non-equidistant grid
of 200 randomly generated nodes in the interval [0, 2] are also shown in Fig. 6.1.



CHAPTER 6. MATRIX APPROACH FOR NON-EQUIDISTANT GRIDS 119

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.5

0.25

0

0.25

0.5

0.75

1

1.25

1.5

t

y

 

 

exact y ′(t)

approx. y ′(t)

exact
∫ t

0 y(x)dx

approx.
∫ t

0
y(x)dx

Figure 6.1: Exact and approximate evaluation of the first order derivative and the one-
fold integral of y = sin(t) on the grid of 200 random non-equidistant nodes.

6.2.2 Example 2: Evaluation of fractional-order integrals and deriva-
tives

The proposed approach is suitable also for evaluating fractional-order integrals and
derivatives. In Fig. 6.2 and Fig. 6.3 fractional order integrals and derivatives of or-
ders α = 0.1, α = 0.3, α = 0.5, and α = 0.7 of function y = sin(t) are plotted. Each
derivative obtained using non-equidistant step is compared with solution obtained using
the “matrix approach” with equidistant step. The match shows good agreement of the
results.

6.3 Solution of fractional differential equations on non-
equidistant grids

Using discrete analogs of fractional-order derivatives on a non-equidistant grid, we can
easily and conveniently perform discretization and numerical solution of fractional dif-
ferential equations on such grids. We illustrate the developed approach on two classical
benchmark problems: two-term fractional relaxation equation and the Bagley-Torvik
equation.



CHAPTER 6. MATRIX APPROACH FOR NON-EQUIDISTANT GRIDS 120

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
1

0.5

0

0.5

1

1.5

2

t

y

 

 

=0.7

=0.5

=0.3

=0.1

 = [0.1, 0.3, 0.5, 0.7],
with non equidistant step

 = [0.1, 0.3, 0.5, 0.7],
exact integrals

Figure 6.2: Exact and approximate evaluation of α-th order integrals of y = sin(t) on
the grid of 200 random non-equidistant nodes for α = 0.1, 0.3, 0.5, 0.7.
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Figure 6.3: Exact and approximate evaluation of α-th order derivatives of y = sin(t)
on the grid of 200 random non-equidistant nodes for α = 0.1, 0.3, 0.5, 0.7.
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Figure 6.4: Analytical and numerical solution of problem (6.3)

6.3.1 Example 3: Fractional relaxation equation

In the first work on the matrix approach to discrete fractional calculus [11], the following
sample two-term fractional differential equation in terms of the Caputo derivatives [10]
under zero initial conditions was considered:

y(α)(t) + y(t) = 1, (6.3)

y(0) = 0, y′(0) = 0.

The exact analytical solution of this problem can be expressed using the Mittag-Leffler
function:

y(t) = tαEα,α+1(−tα). (6.4)

In Fig. 6.4 the comparison of the exact analytical solution (dotted line), and numerical
solution obtained with the help of developed approach (solid line) using non-equidistant
nodes (with N = 500) for the case of α = 1.8 is shown.
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Figure 6.5: Solution of the Bagley-Torvik equation for A = 1, B = 1, C = 1

6.3.2 Example 4: Fractional oscillator equation

As mentioned above, the proposed approach allows easy solution of ordinary differential
equations with derivatives of arbitrary real order (integer and non-integer). Let us
consider the following classical initial value problem for the Bagley-Torvik equation (also
known as damped fractional oscillator equations):

Ay′′(t) +By(3/2)(t) + Cy(t) = F (t), (6.5)

F (t) =

{
8, (0 ≤ t ≤ 1)
0, (t > 1)

, y(0) = y′(0) = 0.

The solutions of the Bagley-Torvik equation for A = 1, B = 1, C = 1 in the time interval
[0; 30], obtained using two approaches, are shown in Fig. 6.5, and the solutions of the
same problem are shown for A = 1, B = 0.5, C = 0.5 are depicted in Fig. 6.6. In both
cases the number of discretizaton steps is 400. The dotted lines represent the numerical
solutions obtained using equidistant steps (with h = 0.075), and the solid lines represent
the numerical solutions with the same number of randomly generated non-equidistant
steps.
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Figure 6.6: Solution of the Bagley-Torvik equation for A = 1, B = 0.5, C = 0.5

6.4 Solution of distributed-order differential equations on
non-equidistant grids

The presented extension of the matrix approach to discretization of non-integer order
integrals and derivatives and to numerical solution of equations with such operators on
non-equidistant grids can be used for solving distributed-order differential equations, too.
In this chapter, we use the following definition of distributed-order differential/integral
operators [6]:

0D
w(α)
t f(t) =

∫ γ2

γ1
w(α) 0D

α
t f(t) dα, (6.6)

where w(α) denotes the weight function of distribution of order α ∈ [γ1, γ2]. The weight
function w(α) is normalized, so

∫ γ2

γ1
w(α) dα = 1. (6.7)

The idea of distributed-order differential equations was first introduced most probably
by Caputo [2, 3].

As Jiao, Chen, and Podlubny showed recently [6], distributed-order derivatives can be
discretized as
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0D
w(α)
t f(t) ≈ Bw(α)fn, (6.8)

Bw(α) =
p∑

k=1

Bαk w(αk) ∆αk, (6.9)

where matrices Bαk are discrete analogs of fractional derivatives of orders αk on a given
grid – in our case, on a non-equidistant grid. The matrices Bαk for discrete differentiation
of order αk on a non-equidistand grid are obtained as in described above, and then the
matrix Bw(α) for discrete distributed-order differentiation on the same non-equidistand
grid is computed using relationship (6.9).

6.4.1 Example 5: Distributed-order relaxation equation

Let us consider the following initial value problem for the distributed-order relaxation
equation:

0D
w(α)
t x(t) + bx(t) = f(t), (6.10)

x(0) = 1, (6.11)

where the distribution of the orders α is given by the function w(α) = 6α (1 − α),
(0 ≤ α ≤ 1). To be able to use the matrix approach, we need zero initial condition.
Introducing an auxiliary function u(t),

x(t) = u(t) + 1

gives the following initial value problem for the new unknown u(t):

0D
w(α)
t u(t) + bu(t) = f(t)− b, (6.12)

u(t) = 0. (6.13)

The discretization of equation (6.12) gives, as usual in the matrix approach, the following
system of algebraic equations in the matrix form:

(
Bw(α) + bEn

)
Un = Fn, (6.14)

where Un is the vector of the values of u(t) at the discretization nodes, and Fn is the
vector of the values of the right-hand side, f(t)−b, at the same nodes; En is the identity
matrix.

The results of computations for the case of 500 randomly generated nodes in the interval
[0, 5] for b = 0.1 are shown in Fig. 6.7 by solid line. They are in agreement with the
numerical solution obtained for same number of uniformly spaces nodes (dotted line in
Fig. 6.7).
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Figure 6.7: Solution of the distributed-order relaxation equation on equidistant and on
non-equdistant grids.

6.4.2 Example 6: Distributed-order oscillator

Let us consider an initial value problem for the Bagley-Torvik equation, where the damp-
ing term is expressed in terms of distributed-order derivatives:

ay′′(t) + b 0D
w(α)
t y(t) + cy(t) = f(t), f(t) =

{
8, (0 ≤ t ≤ 1)
0, (t > 1)

, (6.15)

y(0) = y′(0) = 0. (6.16)

Similarly to Example 5, we just replace continuous operators with their corresponding
matrix-form discrete analogs on the considered non-equidistant grids, and the known
and unknown function by the vectors of their values in the discretization nodes. This
gives the following algebraic system in the matrix form:

(
aB2

n + bBw(α) + c
)
Yn = Fn. (6.17)

The results of computations for the case of 400 randomly generated nodes in the interval
[0, 30] for A = 1, B = 1, C = 1, ϕ(α) = 6α(1 − α), α ∈ [0, 1], are shown in Fig. 6.8 by
solid line. They are in obvious agreement with the numerical solution obtained for same
number of uniformly spaces nodes (dotted line in Fig. 6.8).
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Figure 6.8: Solution of the distributed-order Bagley-Torvik equation for A = 1, B = 1,
C = 1, ϕ(α) = 6α(1− α), α ∈ [0, 1], on equidistant and on non-equdistant grids.

The Matlab implementation of the matrix approach to discretization of distributed-order
operators and numerical solution of distributed-order differential equations can be found
in the update to the available toolbox [12].

6.5 Method of “large steps”

We will illustrate the idea of the proposed “method of large steps” on an easy-to-follow
and sample problem, which allows exact analytical solution. In this section, we pre-
fer using small snippets of the Matlab code in order to illustrate the simplicity of the
procedure and the idea of how “large steps” are performed.

6.5.1 Sample problem in the interval (0, 2)

It is worth reminding that we use the Caputo derivatives [10]. Let us consider the
following sample problem for large-steps method.

C
0 D

1/2
t y(t) + y(t) =

t0.5

Γ(1.5)
+ t, (t > 0), (6.18)
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Figure 6.9: Solution of (6.18)–(6.19) after the first “large step”

y(0) = 0. (6.19)

One can easily verify that the exact solution of this problem is y(t) = t.

6.5.2 First “large step”: interval (0,1)

We can solve the problem (6.18)–(6.19) numerically in the interval (0,1) using the recently
developed matrix approach [11, 14] and the corresponding MATLAB toolbox [11].

clear all

h = 0.01;

t = 0:h:1;

N = 1/h + 1;

M = zeros(N,N);

M = ban(0.5, N, h) + eye(N,N);

F = (t.^(0.5)/gamma(1.5) + t)’;

M = eliminator(N,[1])*M*eliminator(N,[1])’;

F = eliminator(N,[1])*F;

Y = M\F;

Y0 = [0; Y];

plot (t,Y0,’b’)

set(gca, ’xlim’, [0 2], ’ylim’, [0 2] )

grid on, hold on
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So, we have solved the previous problem in (0,1) and we know y(t) for t in (0,1). How
can we continue from the point to which we have arrived?

6.5.3 Second “large step”: interval (1,2)

Taking into account that for t > 1 (we recall that we use the Caputo derivatives
here)

C
0 D

1/2
t y(t) = C

1 D
1/2
t y(t) +

1

Γ(0.5)

1∫

0

y′(τ)dτ

(t− τ)1/2
, (t > 1) (6.20)

and that we already have y(t) = t in the interval (0,1), the problem (6.18)–(6.19) can be
written as

C
1 D

1/2
t y(t) + y(t) =

t0.5

Γ(1.5)
+ t− 1

Γ(0.5)

1∫

0

dτ

(t− τ)1/2
(t > 1). (6.21)

The integral in the last term can be easily evaluated as

1∫

0

dτ

(t− τ)1/2
= 2t0.5 − 2(t− 1)0.5, (t > 1). (6.22)

Now we are ready to make the second “large step”, i.e. solution in the interval (1, 2). In
the interval (1, 2) (second step) we have to solve the following problem:

C
1 D

α
t y(t) + y(t) =

t0.5

Γ(1.5)
+ t− 2t0.5

Γ(0.5)
+

2(t− 1)0.5

Γ(0.5)
; (t > 1) (6.23)

y(1) = 1. (6.24)

To solve this problem using the matrix approach [11, 14], we need to obtain zero initial
conditions. For this, we make substitution

y(t) = u(t) + 1, (6.25)

and for the auxiliary function u(t) we have the desired initial value problem with zero
initial condition:

C
1 D

α
t u(t) + u(t) =

t0.5

Γ(1.5)
+ t− 2t0.5

Γ(0.5)
+

2(t− 1)0.5

Γ(0.5)
− 1; (t > 1) (6.26)
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Figure 6.10: Solution of (6.23)–(6.24) after the second “large step”

u(1) = 0. (6.27)

Now we solve the problem for u(t) using the same matrix approach toolbox, and plot
the solution.

clear all

h = 0.01;

t = 1:h:2;

N = 1/h + 1;

M = zeros(N,N);

M = ban(0.5, N, h) + eye(N,N);

F = (t.^(0.5)/gamma(1.5) + t - 2*t.^(0.5)/gamma(0.5) ...

+ 2*(t-1).^(0.5)/gamma(0.5) - 1)’;

M = eliminator(N,[1])*M*eliminator(N,[1])’;

F = eliminator(N,[1])*F;

U = M \F;

U0 = [0; U];

Y0 = U0 + 1;

plot(t, Y0, ’g’)

We see that finally we obtained the solution of the original problem in the interval (0,2)
using two “large steps”: the first step was numerical solution in (0,1), and the second step
was numerical solution in (1,2). In the right-hand side of the equation for the interval
(1,2) two additional terms appeared as the result of considering fractional differentiation

with a different lower terminal, namely C
1 D

1/2
t y(t).
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6.6 Method of “large steps”: general scheme

In general, if we have considered the problem (0 < α < 1)

C
0 D

α
t y(t) = f(y(t), t), (t > 0), (6.28)

y(0) = 0, (6.29)

and obtained its solution in the interval (0, a) (and the final value ya at t = a), then we
can use this for transforming the problem to

C
aD

α
t y(t) = f(y(t), t)− 0P

α
a y(t), (t > a), (6.30)

y(a) = ya, (6.31)

where

0P
α
a y(t) =

1

Γ(1− α)

a∫

0

(t− τ)α−1y′(τ) dτ, (t > a) (6.32)

is the contribution of the “past” of the process y(t) in the interval [0, a] to the differential
equations describing its current state in the interval [a, b].

It is useful to note here that 0P
α
a y(t) can be evaluated as a fractional derivative of the

function y∗(t) = (1−H(t−a))y(t), where H(t) is the Heaviside unit-step function:

0P
α
a y(t) = C

0 D
α
t

(
(1−H(t− a))y(t)

)
(6.33)

Introducing an auxiliary function y(t) = u(t) + ya, we arrive at the problem with zero
initial condition for the function u(t), which can be solved numerically:

C
aD

α
t u(t) = f(u(t) + ya, t)− 0P

α
a y(t)− ya, (t > a), (6.34)

u(a) = 0. (6.35)

This process of making “large steps” can be continued as long as necessary.
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6.7 Linear fractional differential equations

Let us consider a linear fractional differential equation with constant coefficients in the
interval (0, b),

m∑

k=1

pk
C
0 D

αk
t y(t) + p0 y(t) = f(t), (0 < t < b), (6.36)

If we assume that ak < n, (k = 1, . . . ,m) and n− 1 < max
k

ak < n, then we have to add

n initial conditions, for example,

y(k)(0) = 0, k = 0, . . . , n− 1. (6.37)

The equation for the second “large step” in the interval (a, b) will be

m∑

k=1

pk
C
aD

αk
t y(t) + p0y(t) = f(t)−

m∑

k=1

pk 0P
αk
a y(t), (a < t < b) (6.38)

and the initial conditions for the second “large step” will have the values of the final

values y
(k)
a of the solution in the first interval:

y(k)(a) = y(k)
a , k = 0, . . . , n− 1. (6.39)

The initial conditions should be, as usual, transformed to zero initial conditions. For
this we have to introduce the auxiliary function u(t)

y(t) = u(t) +
n−1∑

k=0

y(k)
a

tk

k!
. (6.40)

This process of making “large steps” can be continued as long as necessary.

6.8 Method of “large steps” and the problem of initializa-
tion of fractional derivatives

Lorenzo and Hartley [8, 9] raised the question about initialization of fractional deriva-
tives. Their motivation was to use or recover the information about the process y(t) in
the interval (0, a), if we consider fractional derivatives of y(t) in (a, b).
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It is worth noting that in the second “large step” in the considered sample problem we
used, in fact, the proper initialization of the fractional derivative in the interval (1, 2)
based on the known behavior of y(t) in (0, 1).

In other words, proper initialization in the interval (a, b) can be done only when we know
all values of y(t) in the preceding interval (0, a).

6.9 Chapter summary

The presented extension of the matrix approach to discretization of non-integer order
derivatives and integrals of constant and distributed order allows numerical solution of
differential equations with such derivatives on non-equidistant grids.

The matrix approach proves to be a very easy, algorithmic, modular, and convenient
method, that unifies numerical solution of many types of problems in various settings. In
the examples in this chapter we, for simplicity, used only ordinary differential equations
with generalized derivatives; partial differential equations on non-equidistant grids can
be solved using the technique published earlier [14].

Of course, the proposed method can be used for equations containing any mixture of left-
sided, right-sided, and two-sided derivatives of integer orders, constant non-integer or-
ders, and distributed orders, on equidistant (uniform) or non-equidistant (non-uniform)
grids. In all cases, those derivatives are simply replaced with their discrete analogs in
the form of easily computable matrices.

The methods presented in this article finally allow fractional-order differentiation and
integration, and also distributed-order differentiation and integration, of non-uniformly
sampled signals.

The proposed method of “large steps” allows to avoid in many situations the limitations
of the “short memory principle” and to obtain numerical solutions in large intervals with
higher accuracy. At the same time, the method of “large steps” finally allows develop-
ment of variable and adaptive step length techniques for solving differential equations of
non-integer order (ordinary and partial).

We would like to mention that other kind of efforts towards using non-equidistant grids
for numerical solution of fractional differential equations can be found in [5, 18], and
that some existing methods, like the collocation method [1, 4] or explicit numerical
methods [16], can be re-considered in terms of non-equidistant grids as well.
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Chapter 7

Fitting of experimental data
using Mittag-Leffler function

7.1 Introduction

Fitting experimental data is, undoubtedly, the most important step on the way to good
models of considered processes for modeling and control purposes.

Formulation of basic laws of physics, chemistry, electrotechnics, and other fields of sci-
ence, normally starts from experimental observations. An experiment is set up, data
are collected from the experiment, and a researcher postulates a hypothesis based on
his assessment of those experimental data. Such assessment can be intuitive or ex-
act; nowadays, researchers usually pre-process the collected data in order to remove
artifacts, outliers, noise, or other disturbances, and then use some simple function
y(t) = f(t, params), where t is the independent variable and params are model pa-
rameters, in order to describe the results analytically. The main problem is to find such
a set of parameters params, which gives satisfactory agreement between the experimen-
tal data and the fitting function y(t).

A good choice of the fitting function y(t) with appropriate number of parameters (having
less parameters is better) can serve as a general model for a wide class of objects or
processes.

Let us recall a historical example of the discovery of Hooke’s law in the theory of elasticity.
Experimenting with elongation of various kinds of elastic materials led Robert Hooke
to the observation that for small deformations the stress σ in the material due to its
deformation is approximately proportional to the deformation ε:

σ ∼ ε

135
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It is well known that he formulated this observation in the form of an anagram, which
after decoding sounds as “Ut tensio, sic vis” (“As the extension, so the force”). In other
words, he suggested the model which we now call the Hooke’s law:

σ = E ε,

where E (which later got the name of the modulus of elasticity or the Young modulus)
is a constant depending on a particular material; taking different materials, we obtain
different values of the parameter E.

7.2 Recalling Basic Notions of the Fractional-Order Cal-
culus

The standard notation for denoting the left-sided fractional-order differentiation of a
function f(t) defined in the interval [a, b] is aD

α
t f(t), with α ∈ R. Sometimes a simplified

notation f (α)(t) or dαf(t)/dtα is used. In some applications also right-sided fractional
derivatives tD

α
b f(t) are used, but in the present article we will use only left-sided frac-

tional derivatives. Even from the notation one can see that evaluation of the left-sided
fractional-order operators require the values of the function f(t) in the interval [a, t].
When α becomes an integer number, this interval shrinks to the vicinity of the point t,
and we obtain the classical integer-order derivatives as particular cases.

There are several definitions of the fractional derivatives and integrals, of which we need
only the following two.

The Caputo definition of fractional differentiation can be written as [1]:

C
aD

α
t f(t) =

1

Γ(n− α)

∫ t

a

f (n)(τ)

(t− τ)α−n+1
dτ, (7.1)

(n− 1 ≤ α < n)

where Γ(z) is Euler’s gamma function.

Above Caputo definition is extremely useful in the time domain studies, because the ini-
tial conditions for the fractional-order differential equations with the Caputo derivatives
can be given in the same form as for the integer-order differential equations. This is
an advantage in applied problems, which require the use of initial conditions containing
starting values of the function and its integer-order derivatives f(a), f

′
(a), f

′′
(a), . . . ,

f (n−1)(a).

The formula for the Laplace transform of the Caputo fractional derivative (7.1) has the
form [1]:

∫ ∞

0
e−st C0 D

α
t f(t) dt = sαF (s)−

n−1∑

k=0

sα−k−1 f (k)(0), (7.2)
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(n− 1 ≤ α < n).

If the process f(t) is considered from the state of absolute rest, so f(t) and its integer-
order derivatives are equal to zero at the starting time t = 0, then the Laplace transform
of the α-th derivative of f(t) is simply sαF (s).

7.3 The Mittag-Leffler function

As it is obvious from its name, the Mittag-Leffler function was introduced by G. M.
Mittag-Leffler. This function is a generalization of exponential function, and it plays
in the fractional-order calculus the same fundamental role as the exponential function
plays in the classical integer-order calculus and integer-order differential equations. Many
known functions, which we used to consider as different, are, in fact, just particular cases
of the Mittag-Leffler function.

7.4 Data fitting using the Mittag-Leffler function

In order to provide a tool for quick and easy creation of models of arbitrary real (integer
and non-integer) order, we have developed a new approach to data fitting, which is based
on using the Mittag-Leffler function.

The idea of our method is based on the following. When it comes to obtaining a math-
ematical models from measurements or observations, it is a common practice in many
fields of science and engineering to choose the type of the fitting curve and identify its
parameters using some criterion (usually a least squares method). We would like to
point out that choosing a particular type of a curve means that, in fact, the process is
modeled by a differential equation, for which that curve is a solution.

For example, fitting data using the equation y(t) = at + b (known as linear regression
model) means that the process is modeled by the solution of a simple second-order
differential equation under two initial conditions:

y′′ = 0, y(0) = b, y′(0) = a. (7.3)

Similarly, the fitting function in the form y = a sin(ωt)+b cos(ωt) means that the process
is modeled by the solution of the initial value problem of the form

y′′ + ω2y = 0, y(0) = b, y′(0) = aω. (7.4)

Choosing the fitting function in another frequently used form, y = aebt, means that the
process is modeled by the solution of the initial value problem
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y′ − b y = 0, y(0) = a. (7.5)

Thinking in this way, we conclude that instead of postulating the shape of the fitting
curve it is possible to postulate the form of the initial-value problem and identify the
parameters appearing in the differential equation and in the initial conditions. For the
first time this method was suggested and used in [1, Chapter 10]. We would like to
emphasize that obtaining a fitting function y(t) for measurements of a dynamic process
immediately means that that process is described by an initial-value problem of which
y(t) is the solution.

Suppose that the measured data are fitted by

y = y0Eα,1(a tα) (7.6)

where Eα,β(z) is the Mittag-Leffler function defined as [1]

Eα,β(z) =
∞∑

k=0

zk

Γ(αk + β)
. (7.7)

The parameters to be identified are α, a, and y0.

For example, If the data are fitted by the function (7.6), then this means that they are
modeled by the solution of the following initial-value problem for a two-term fractional-
order differential equation containing the Caputo fractional derivative of order α:

C
0D

α
t y(t)− a y(t) = 0, y(0) = y0. (7.8)

7.5 Examples

The proposed method of fitting is illustrated below on several examples, which includes
“restoration” of the Mittag-Leffler function from its noised values, fitting a complimen-
tary error function, fitting a sine wave, and fitting damped oscillations.

7.5.1 Fitting back the noised Mittag-Leffler function:

The first example is the ”restoration” of the function y(x) = 0.8E1.5(−0.2x1.5). Three
series of ”measured” data are created by adding noise to the values of the Mittag-Leffler
function at the same set of nodes x. Such noisy data are fitted using MLFFIT1.M
function.
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% Define the set of nodes (x)

% and the parameter $\alpha$ of the

% Mittag-Leffler function:

x = 0:0.35:20;

alfa = 1.5;

% Since for computing the one-parameter

% Mittag-Leffler function

% we call the Matlab function for computing

% the two-parameter Mittag-Leffler function,

% the second parameter is equal to 1:

beta = 1;

% Now let us simulate measurements

% by adding noise to the exact values

% of the original function

y1 = 0.8*mlf(alfa, beta, -0.2*x.^alfa, 6) ...

+ (-.05 + .1*rand(size(x)));

y2 = 0.8*mlf(alfa, beta, -0.2*x.^alfa, 6) ...

+ (-.05 + .1*rand(size(x)));

y3 = 0.8*mlf(alfa, beta, -0.2*x.^alfa, 6) ...

+ (-.05 + .1*rand(size(x)));

% and fit these "measurements"

% by calling MLFFIT1:

[c, R2] = mlffit1([x x x], [y1 y2 y3], ...

[0.5; 0.5; 0.5; -0.5], 6);

% Let us check if the coefficients

% of the fitting Mittag-Leffler function

% are close to the original coefficients:

alpha = c(1)

C = c(3)

a = c(4)

% Finally, we can plot the "measurements",

% the original function and the function

% that fits the "measurement":

xfine = x(1):0.01:x(end);

yfit = c(3)*mlf(c(1),c(2),c(4)*xfine.^c(1),6);

yorig = 0.8*mlf(alfa,beta,-0.2*xfine.^alfa,6);

figure(1)

plot(xfine, yorig, ’r’, x,y1, ’.b’, x, y2, ’.g’, ...

x, y3, ’.m’, xfine, yfit, ’k’)

grid on

legend(’original function’, ’noised data’, ...

’noised data’, ’noised data’, ’fitting’)

The output of the above code was

α = 1.4949, C = 0.8053, a = −0.2008,
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Figure 7.1: Restoring the function y(x) = 0.8E1.5(−0.2x1.5)

which is very close to the values of these parameters for the original function y(x) = 0.8E1.5(−0.2x1.5).
The noised data, and the fitting curve are shown in Fig. 7.1.

7.5.2 Fitting the classics (complementary error function):

Let us ”restore” the following function: y(x) = exerfc(
√
x). it should be mentioned that this function

can be written as y(x) = E1/2,1(−x1/2).

% Define the set of nodes (x)

x = 0:0.35:20;

% Now let us simulate measurements

% by adding noise to the exact values

% of the original function

y1 = exp(x).*erfc(sqrt(x)) ...

+ (-.02 + .04*rand(size(x)));

y2 = exp(x).*erfc(sqrt(x)) ...

+ (-.02 + .04*rand(size(x)));

y3 = exp(x).*erfc(sqrt(x)) ...

+ (-.02 + .04*rand(size(x)));
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% and fit these "measurements"

% by calling MLFFIT1:

[c, R2] = mlffit1([x x x], [y1 y2 y3], ...

[0.5; 0.5; 0.5; -0.5], 6);

% Let us output the coefficients

% of the fitting Mittag-Leffler function:

alpha = c(1), C = c(3), a = c(4)

% Finally, we can plot the "measurements",

% the original function and the function

% that fits the "measurement":

xfine = x(1):0.01:x(end);

yfit = c(3)*mlf(c(1),c(2),c(4)*xfine.^c(1),6);

yorig = exp(xfine).*erfc(sqrt(xfine));

plot(xfine, yorig,’r’,x,y1,’.b’,...

x,y2,’.g’,x,y3,’.m’,xfine,yfit,’k’)

grid on

legend(’original function’,’noised data’,...

’noised data’,’noised data’,’fitting’)

The output of the above code was

α = 0.4966, C = 1.0028, a = −1.0175,

which is very close to the values of these parameters for the original function y(x) = exerfc(
√
x) =

E1/2,1(−x1/2). The noised data, and the fitting curve are shown in Fig. 7.2.

7.5.3 Dumped oscillation fitting:

Let us test if the Mittag-Leffler function is abe to fit dumped oscillations: y(x) = e(−αx) cos(x).

% Define the dumping coefficient:

alfa = 0.2;

% Define the set of nodes (x)

x = 0:0.35:20;

% Now let us simulate measurements by adding noise to

% the exact values of the original function

y1 = exp(-alfa*x).*cos(x)+(-.05+.1*rand(size(x)));

y2 = exp(-alfa*x).*cos(x)+(-.05+.1*rand(size(x)));

y3 = exp(-alfa*x).*cos(x)+(-.05+.1*rand(size(x)));

% and fit these "measurements" by calling MLFFIT1:

[c, R2] = mlffit1([x x x], [y1 y2 y3], ...

[0.5; 0.5; 0.5; -0.5], 6);

% Let us output if the coefficients

% of the fitting Mittag-Leffler function:

alpha = c(1), C = c(3), a = c(4)

% Finally, we can plot the "measurements",
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Figure 7.2: Restoring the function y(x) = exerfc(
√
x)
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Figure 7.3: Fitting damped oscillations y(x) = e( − 0.2x) cos(x)

% the original function and the function

% that fits the "measurement":

xfine = x(1):0.01:x(end);

yfit = c(3)*mlf(c(1),c(2),c(4)*xfine.^c(1),6);

yorig = exp(-alfa*xfine).*cos(xfine);

plot(xfine,yorig,’r’,x,y1,’.b’,x,y2,’.g’, ...

x,y3,’.m’,xfine,yfit,’k’)

legend(’original function’,’noised data’,...

’noised data’,’noised data’,’fitting’)

The output of the above code was

α = 1.7631, C = 0.9495, a = −1.0340.

The noised data, and the fitting curve are shown in Fig. 7.3.

7.6 Chapter summary

The Mittag-Leffler function can be used as a universal fitting function, which is capable of capturing the
behavior of various types of processes, including such practically important cases as monotonic processes,
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oscillatory behavior, and damped oscillations. There is no need in postulating a narrow type of the fitting
function anymore; the MIttag-Leffler function flexibly uncovers the nature of the fitted data. The broad
field of potential applicaitons the proposed approach was applied recently for providing the first example
of identification of variable-order systems [8].

In addition, as soon as the data are fitted with the help of the Mittag-Leffler function, the process can
be described by a two-term fractional-order differential equation. This is an important advantage of
the proposed approach to fitting experimental data – it opens a way to creating standard models of
elementary processes.
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Chapter 8

Identification of parameters of a
variable-order system

8.1 Introduction

The standard notation for denoting the left-sided fractional-order differentiation of a function f(t) defined
in the interval [a, b] is aD

α
t f(t), with α ∈ R. Sometimes a simplified notation f (α)(t) or dαf(t)/dtα is used.

In some applications also right-sided fractional derivatives tD
α
b f(t) are used, but in the present article

we will use only left-sided fractional derivatives. Even from the notation one can see that evaluation
of the left-sided fractional-order operators require the values of the function f(t) in the interval [a, t].
When α becomes an integer number, this interval shrinks to the vicinity of the point t, and we obtain
the classical integer-order derivatives as particular cases.

There are several definitions of the fractional derivatives and integrals, of which we recall only the
following two.

The Caputo definition of fractional differentiation can be written as [1]:

C
aD

α
t f(t) =

1

Γ(n− α)

∫ t

a

f (n)(τ)

(t− τ)α−n+1
dτ, (8.1)

(n− 1 ≤ α < n)

where Γ(z) is Euler’s gamma function.

The Caputo definition is extremely useful in the time domain studies, because the initial conditions for
the fractional-order differential equations with the Caputo derivatives can be given in the same form as
for the integer-order differential equations. This is an advantage in applied problems, which require the
use of initial conditions containing starting values of the function and its integer-order derivatives f(a),

f
′
(a), f

′′
(a), . . . , f (n−1)(a).

The formula for the Laplace transform of the Caputo fractional derivative (8.1) has the form [1]:

∫ ∞

0

e−st C0 D
α
t f(t) dt = sαF (s)−

n−1∑

k=0

sα−k−1 f (k)(0), (8.2)

(n− 1 ≤ α < n).

145
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If the process f(t) is considered from the state of absolute rest, so f(t) and its integer-order derivatives
are equal to zero at the starting time t = 0, then the Laplace transform of the α-th derivative of f(t) is
simply sαF (s).

The second definition, which we need, is the definition of the left-sided Caputo-Weyl fractional deriva-
tive:

W
−∞D

α
t f(t) =

1

Γ(n− α)

∫ t

−∞

f (n)(τ)dτ

(t− τ)α−n+1
, (8.3)

(n− 1 ≤ α < n)

The Fourier transform of W
−∞D

α
t f(t) is simply (jω)α. The Caputo-Weyl definition must be used in the

frequency domain studies of fractional-order systems. The Caputo-Weyl derivative can be considered
as the Caputo derivative with a→ −∞. In other words, the Caputo definition allows the study of the
transient effects in fractional-order systems, which were initially at the state of rest, while the Caputo-
Weyl definition allows the study of frequency responses of such systems.

Fractional-order models have been already used for modeling of electrical circuits (such as domino ladders,
tree structures, etc.) and elements (coils, memristor, etc.). The review of such models can be found in
[6, 7, 8].

Let us consider, for instance, a capacitor as a basic element of many circuits. Westerlund and Ekstam
in 1994 proposed a new linear capacitor model [9]. It is based on Curie’s empirical law of 1889 which
states that the current through a capacitor is

i(t) =
u0

h1tα
,

where h1 and α are constants, u0 is the dc voltage applied at t = 0, and 0 < α < 1, (α ∈ R).

For a general input voltage u(t) the current is

i(t) = C
dαu(t)

dtα
≡ C 0D

α
t u(t), (8.4)

where C is capacitance of the capacitor. It is related to the kind of dielectric used in the capacitor. The
order α is related to the losses of the capacitor. Westerlund and Ekstam provided in their work the table
of various capacitor dielectrics with appropriated constants α which have been obtained experimentally
by measurements.

The relationship between the current and the voltage in a capacitor is described using fractional-order
integration:

u(t) =
1

C

∫ t

0

i(t)dtα ≡ 1

C
0D
−α
t i(t). (8.5)

Then the impedance of a fractional capacitor is:

Zc(s) =
1

C sα
=

1

ωαC
ej(−α

π
2
), ω ∈ (−∞,∞). (8.6)

Ideal Bode’s characteristics of the transfer function for a real capacitor (8.6) are depicted in Fig. 8.1.

General characteristics of the transfer function of a real capacitor (8.6) are [10]:

• Magnitude: constant slope of −α20dB/dec.;

• Crossover frequency: a function of 1/C;

• Phase: horizontal line of −απ
2

;
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Figure 8.1: Bode plots of real capacitor.
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Besides this fractional-order capacitor model, we can mention the new fractional-order models of coils
[11], memristive systems [12], ultracapacitors [13, 14], and the element called fractor [15]. Such ele-
ments can be combined with classical passive and active elements for creating various types of electrical
circuits.

Among the aforementioned fractional-order elements, the fractor is of special interest, because it is known
that the order of fractor slowly changes in time with aging of chemical materials of which it is composed
[16, Table I]. In other words, fractor is an example of an element of variable non-integer order. Such
variable-order behavior of the fractor was experimentally studied in [16]. In this chapter we demonstrate
that variable-order behavior can be observed in a wide class of ladder-type circuits composed of standard
passive elements.

8.2 Fractional Devices and Fractance

Besides simple elements like a capacitor, electrical circuits of more or less complex structure were studied
by many authors. The review of most of the previous efforts can be found in [6]. A circuit that exhibits
fractional-order behavior is called a fractance [1].

8.2.1 Fractances

The fractance devices have the following characteristics [17]. First, the phase angle is constant indepen-
dent of the frequency within a wide frequency band. Second, it is possible to construct a filter having a
moderate characteristics which can not be realized by using the conventional devices.

Generally speaking, there are three basic types of fractances. The most popular is a domino ladder
circuit network [22]. Another type is a tree structure of electrical elements [17], and finally, we can find
out also some transmission line circuit (or symmetrical domino ladder [18]).

Design of fractances having given order α can be done easily using any of the rational approximations
or a truncated continued fraction expansion (CFE), which also gives a rational approximation [19, 20].
Truncated CFE does not require any further transformation; a rational approximation based on any other
methods must be first transformed to the form of a continued fraction; then the values of the electrical
elements, which are necessary for building a fractance, are determined from the obtained finite continued
fraction. If all coefficients of the obtained finite continued fraction are positive, then the fractance can
be made of classical passive elements (resistors and capacitors). If some of the coefficients are negative,
then the fractance can be made with the help of negative impedance converters [6, 19].

It is worth mentioning also the constant phase element (CPE), which exhibits the fractional-order behav-
ior as well. It is a metal-insulator-solution or metal-insulator-liquid interface used in electrochemistry.
CPE interprets a dipole layer capacitance [21]. The impedance of CPE is expressed as ZCPE(s) = Qs−α

and CPE cannot be described by a finite number of passive elements with frequency independent val-
ues.

8.2.2 Traditional domino ladder (half-order integrator)

Several different algorithms for approximation the fractional order integrators are currently available [6,
22, 23, 24, 25, 26]. Most of them are based on some form of approximation of irrational transfer functions
in the complex domain. The commonly used approaches include the aforementioned CFE method and
its modifications, or representation by a quotient of polynomials in s in a factorized form.
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Figure 8.2: Domino ladder scheme.

The main disadvantage of these algorithms is that the values of electrical elements (like resistors and
capacitors) needed for the approximation are not the standard values of elements produced by manufac-
turers.

However, it is still possible to obtain highly accurate and practically usable implementations of a
fractional-order integrator using only standard elements with the standard values available in the mar-
ket. The idea of this practical approach to implementation of fractional-order systems is based on the
domino ladder structure.

The domino ladder circuit shown in Fig. 8.2 has the following impedance:

G(s) = R+
1

sC + 1

R+ 1

sC+ 1

R+ 1

sC+ 1

R+ 1
sC+...

=
1

(Ts)0.5
, (8.7)

where T = C/R. In the ideal case of infinite realization, (8.7) gives a half-order integrator; a truncated
realization gives its approximation.

The domino ladder circuit can be also considered as a model of a semi-infinite RC line, which is described
by the following partial differential equations [27, 28]:

∂

∂x
u(t, x) = Ri(t, x), (8.8)

∂

∂x
i(t, x) = C

∂

∂t
u(t, x), (8.9)

where u(t, x) is the voltage and i(t, x) is the current at point x at time instance t.

This can be rewritten as
∂2

∂x2
u(t, x) = RC

∂

∂t
u(t, x). (8.10)

From this equation a relationship between the current i(t, 0) and voltage u(t, 0) at the beginning of the
semi-infinite RC line can be obtained in terms of half-order integral; in the Laplace domain it has the
following form:

G(s) =
U(s, 0)

I(s, 0)
=

√
R

C

1

s0.5
, (8.11)

where I(s, 0) and U(s, 0) are the Laplace transforms of i(t, 0) and u(t, 0).

8.2.3 Domino ladder with alternating resistors

For building accurate analog approximation of the half-order integrator using easily accessible elements
available in the market, the approach presented in Fig. 8.3 can be used.



CHAPTER 8. IDENTIFICATION OF PARAMETERS OF A VO SYSTEM 150

-
i(t)

6

u(t)

. . .

C C C

R1 R2 R1

Figure 8.3: Proposed analogue model of half-order integrator.
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Figure 8.4: Enhanced domino ladder for half-order integration.

Based on the observation made in article [29], we can formulate the following design algorithm:

(a) Choose the values of R1 and C in order to obtain the required low frequency limit.

(b) Choose value of R2 in order to satisfy the condition R2 ≈ 4R1. This condition allows to select
those values of resistors that are available as manufactured.

(c) Choose the ladder length n (number of steps in the domino ladder) in order to obtain the desired
frequency range of approximation.

8.2.4 Enhanced domino ladder for half-order integration

The modified ladder with two alternating values of resistors performs better than the classical domino
ladder, but the phase shift is still equal not to 45◦, but to approximately 43◦–44◦ (45◦ achieved only at
very short frequency range).

To further improve the accuracy of approximation, let us modify the structure of the domino ladder in
such a way that there are not only two values of resistors, but also two values of capacitors are used
(Fig. 8.4).

Fig 8.5 presents the experimental results for the enhanced domino ladder for half-order integration with
the following parameters of the circuit presented in Fig. 8.4: R1 = 2320Ω, R2 = 8200Ω, C1 = 330nF,
C2 = 220nF, and the number of steps in the ladder is equal to n = 34. The results are compared with
the realization presented in Fig. 8.3. It is obvious that the phase plot of the enhanced ladder is indeed
is much closer to the 45◦ than in the case of the classical domino ladder.

8.2.5 A new type of fractances: a nested ladder

Based on the above results, we can easily extend them to build a fractional order integrator of order
0.25. This can be done by replacing the capacitors in the scheme in Fig. 8.3 by half-order integrators,
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Figure 8.5: Results of modeling of half-order integrator using a modified domino ladder
(dotted line: capacitors with one capacity value; solid line: capacitors with two capacity
values).
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Figure 8.6: Integrator of order α = 0.25 in the form of a nested ladder.

which can be either classical domino ladders or enhanced domino ladders. This step can be interpreted
as an introduction a half-order dynamics into the equation (8.9). This results in a transfer function of
order α = 0.25, which corresponds to a quarter-order integrator.

In Fig. 8.6 the scheme of the approximation of a quarter-order integrator is shown; Z0.5 are the
impedances of modified or enhanced domino ladders implementing half-order integrators.

In the same way (namely, by replacing impedances Z0.5 with Z0.25) an integrator of order α = 0.125 and
so forth can be built, but this will need a large number of elements.

We call such a structure of electrical circuit the nested ladder. The nested ladder is an example of
using the ideas of self-similarity and fractality for creating electrical circuits exhibiting non-integer order
behavior.

8.3 Data fitting using the Mittag-Leffler function

In order to obtain a model for the measured data from the considered electrical circuits (ladders and
nested ladders), we have developed a new approach to data fitting, which is based on using the Mittag-
Leffler function and which, in fact, allows obtaining models of non-integer order.

The idea of our method is based on the following. When it comes to obtaining a mathematical models
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from measurements or observations, it is a common practice in many fields of science and engineering
to choose the type of the fitting curve and identify its parameters using some criterion (usually a least
squares method). We would like to point out that choosing a particular type of a curve means that, in
fact, the process is modeled by a differential equation, for which that curve is a solution.

For example, fitting data using the equation y(t) = at+ b (known as linear regression model) means that
the process is modeled by the solution of a simple second-order differential equation under two initial
conditions:

y′′ = 0, y(0) = b, y′(0) = a. (8.12)

Similarly, the fitting function in the form y = a sin(ωt) + b cos(ωt) means that the process is modeled by
the solution of the initial value problem of the form

y′′ + ω2y = 0, y(0) = b, y′(0) = aω. (8.13)

Choosing the fitting function in another frequently used form, y = aebt, means that the process is
modeled by the solution of the initial value problem

y′ − b y = 0, y(0) = a. (8.14)

Thinking in this way, we conclude that instead of postulating the shape of the fitting curve it is possible to
postulate the form of the initial-value problem and identify the parameters appearing in the differential
equation and in the initial conditions. For the first time this method was suggested and used in [1,
Chapter 10]. In this chapter we, however, just emphasize that obtaining a fitting function y(t) for
measurements of a dynamic process immediately means that that process is described by an initial-value
problem of which y(t) is the solution.

In the present article the measured data are fitted by

y = y0Eα,1(a tα) (8.15)

where Eα,β(z) is the Mittag-Leffler function defined as [1]

Eα,β(z) =

∞∑

k=0

zk

Γ(αk + β)
. (8.16)

The parameters to be identified are α, a, and y0.

If the data are fitted by the function (8.15), then this means that they are modeled by the solution of
the following initial-value problem for a two-term fractional-order differential equation containing the
Caputo fractional derivative of order α:

C
0D

α
t y(t)− a y(t) = 0, y(0) = y0. (8.17)

8.4 Experimental Results

8.4.1 Experimental setup

For the experimental verification of the introduced method, the circuits presented in Section 8.2 were
built. For measurements, the modified domino ladder circuit and the nested ladder were connected to
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Figure 8.7: Experimental setup used for all measurements: 1 – domino ladder, 2 – nested
ladder, 3 – dSpace card, 4 – computer with Matlab/Simulink software.

Figure 8.8: Detailed view: 1 – domino ladder, 2 – nested ladder.

the amplifier electronic circuit of the operational amplifiers TL071 and to the dSpace DS1103 DSP card
connected to a computer. The real laboratory setup is shown in Fig. 8.7 and detailed view of the ladders
is in Fig. 8.8.

The electronic scheme presented in Fig. 8.9 uses two operational amplifiers. The first one is working
in the integrator configuration and the second one is working in the inverse unit-gain for compensating
the signal inversion of the integrator amplifier. The resistor Ri can be used for changing the gain of the
integrator and it was chosen to Ri = 3.3kΩ in order to keep a gain equal one. The u1 is an input and
u2 is an output of the integrator system.

8.4.2 Modified half-order domino ladder measurements

The tested circuit has the following parameters of the circuit presented in Fig. 8.3: R1 = 2000Ω,
R2 = 8200Ω, C = 470nF, and numbers of steps in the ladders was taken first n = 60 and then n = 130.
The sampling period was Ts = 0.0001 s. The manufacturing tolerance of the elements used for making
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Figure 8.9: Electronic circuit of measurement setup for integrator.
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Figure 8.10: Electronic circuit of direct measurement setup for ladders.

such ladders is 1% for resistors and 20% for capacitors. As it can be seen in Fig. 8.11 and Fig. 8.12, the
obtained experimental results fully confirm the theoretical considerations and simulations.

8.4.3 Quarter-order domino ladder measurements

The tested circuit has the following parameters of the circuit presented in Fig. 8.3: R1 = 2000Ω,
R2 = 8200Ω, C = 470nF and realization length equal n = 14× 14, that is 14 sub-ladders with 14 steps
each. The sampling period was Ts = 0.0001 s. The manufacturing tolerance of the elements used for
making such ladders is 1% for resistors and 20% for capacitors. As it can be seen in Fig. 8.13 and
Fig. 8.14, the obtained experimental results confirm the theoretical considerations and simulations. A
little deviation in the time domain is due to small number of the nested ladder steps, which can be also
observed in the frequency domain (only two and half decades approximation).

8.5 Variable-order behavior

If the measurements are obtained for the fixed interval [0, t], then fitting using the Mittag-Leffler function
(8.15), described in Section 8.3, immediately gives the model (8.17) of fractional order α.

However, if we consider the changing length of the interval, then the resulting order of the model will
be, in general, a function of this changing interval length t: α = α(t). The same holds for other two
parameters.

In our experiments we considered the growing number of measurements that are used for fitting the
measured data. We increment the length of the time interval by 1 s within first 5 s, and then use
the increment of 5 s up to 100 s. This allowed us to better examine the time-domain response of
the considered circuits (discharge of both ladders), connected as in Fig. 8.10, near the starting point
t = 0, and also their time-domain responses in long run, which was in our case the interval up to 100
seconds. Discharges of the 60-steps domino ladder, 130-steps domino ladder, and nested domino ladder
are depicted in Figs. 8.15, 8.16, and 8.17, respectively. The sampling period was Ts = 0.01 s for all
measurements of the discharges used for the computations.



CHAPTER 8. IDENTIFICATION OF PARAMETERS OF A VO SYSTEM 155

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0

0.5

1

1.5

2

2.5

Time (sec)

u 2(t)

Figure 8.11: Comparison of measured and calculated step responses of half-order inte-
grator with domino ladder of 130 steps: (dotted line) calculated response for α = 0.5167
from Table 8.1 for 1 s; (solid line) measured response.
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Figure 8.12: Measured Bode plots of half-order integrator with domino ladder of 130
steps.



CHAPTER 8. IDENTIFICATION OF PARAMETERS OF A VO SYSTEM 156

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

Time (sec)

u 2(t)

Figure 8.13: Comparison of measured and calculated step responses of quarter-order
integrator with nested ladder of size 14× 14 steps: (dotted line) calculated response for
α = 0.3126 from Table 8.1 for 1 s; (solid line) measured response.
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Figure 8.14: Measured Bode plots of quarter-order integrator with nested ladder of size
14× 14 steps.
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Figure 8.15: Discharge of the 60-steps domino ladder (DL060).

Figure 8.16: Discharge of the 130-steps domino ladder (DL130)).

The results of these computations are presented in Table 8.1 and in the Figs. 8.18 and 8.19.

The method of data fitting using the Mittag-Leffler function is implemented as a Matlab routine [30],
and the Mittag-Leffler function is computed also using our Matlab routine [31].

8.6 Discussion

Our main conclusion is that both the domino ladder and the nested ladder exhibit dual behavior in the
frequency domain and in the time domain. In some frequency range or in some time interval they behave
as fractional-order integrators of (almost) constant order. Outside of that frequency range or outside of
that time interval they behave as variable-order integrators; in one case that variable order depends on
frequency, in the other case it depends on the time.

The domino ladder behaves as Caputo-Weyl integrator of constant order α = 0.5 in a certain frequency
range in the frequency domain. This means that in that frequency range it simply shifts the phase by
απ/2 = π/4. The frequency range where this behavior is observed can be made larger by increasing the
number of steps in the domino ladder. Outside of this frequency range the domino ladder behaves as a
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Figure 8.17: Discharge of the nested domino ladder (NL14x14).
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Figure 8.18: Variable order α(t) for the 60-steps domino ladder (DL060), dotted line,
and the 130-steps domino ladder (DL130), solid line.
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Figure 8.19: Variable order α(t) for the nested domino ladder (NL14x14).
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Table 8.1: Variable order α(t) for the 60-steps domino ladder (DL060), the 130-steps
domino ladder (DL130), and the nested ladder (NL14x14)

t [s] α(t)
DL060 DL130 NL14x14

1 0.5294 0.5167 0.3126
2 0.4984 0.4972 0.4498
3 0.5277 0.4901 0.6978
4 0.5746 0.4821 0.6959
5 0.6408 0.4855 0.7205

10 0.8195 0.5390 0.8278
15 0.8986 0.6326 0.8732
20 0.9385 0.7098 0.9249
25 0.9523 0.7801 0.9354
30 0.9586 0.8227 0.9618
35 0.9604 0.8531 0.9620
40 0.9620 0.8737 0.9770
45 0.9638 0.8900 0.9847
50 0.9651 0.9046 0.9823
55 0.9661 0.9142 0.9837
60 0.9668 0.9201 0.9837
65 0.9670 0.9246 0.9868
70 0.9674 0.9279 0.9872
75 0.9678 0.9307 0.9886
80 0.9677 0.9336 0.9879
85 0.9676 0.9354 0.9888
90 0.9677 0.9373 0.9887
95 0.9672 0.9388 0.9904

100 0.9672 0.9406 0.9915

variable-order system, where the order depends on the frequency, as one can conclude directly from the
Bode plots.

At the same time, in the time domain the same domino ladder behaves as an integrator of variable
non-integer order, where the order depends on the length of the time interval. Close to the starting time
instance t = 0, the domino ladder behaves as an integrator of order α ≈ 0.5, and with growing t the
domino ladder behaves closer and closer to the classical integrator of order 1. It should be mentioned
that although the domino ladder order, α(t), tends to 1, the order 1 is never reached. However, in many
practical applications it is sufficient to neglect the transient effects for some initial time interval and to
assume that α(t) = 1 for all t.

The similar observations hold for the nested ladder circuit, which has been introduced in this chapter.
In some frequency range it behaves as an integrator of order 0.25, and outside of this frequency range it
behaves as a variable-order system, where the order depends on the frequency.

In the time domain the nested ladder circuit behaves like a variable-order integrator, with order α(t)
starting close to 0.25, and then increasing towards 1; the order 1 is also never reached in the considered
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time interval.

A possible explanation of the behavior of both type of fractances in time domain can be the following.
For example, in Fig. 8.2, initially the capacitors are not charged and the initial impedance is just that
of the first resistor. As the capacitors get charged sequentially, the impedance looks like 2R, then 3R
and so on. At very long times, the charged capacitors act as very high impedance, overwhelming the
contribution of the resistors. So, the system tends asymptotically toward an exponent of 1.

The frequency range and the time interval, where the order of the nested ladder is close to 0.25, can be
extended by increasing the number of levels of the ladders in the nested structure, and by increasing the
numbers of steps in those ladders.

8.7 Chapter summary

In this chapter we have presented the experimental study of the two types of electrical circuits made
only of passive elements, which exhibit non-integer order behavior. One of them is the domino ladder,
which already appeared in the works of other authors on the fractional-order systems. The other one is
the circuit that we call the nested ladder and which was introduced in this chapter.

For both these types of circuits we demonstrated that they should be considered not just as non-integer
order systems, but as variable-order systems, where the order depends either on the frequency (in the
frequency domain) or on the time variable (in the time domain).

While in the frequency domain the frequency-dependent variable order is obvious directly from the Bode
plots, providing the evidence of the variable-order behavior of the considered circuits in the time domain
required some additional tools. Namely, we suggested a method of data fitting with the help of the
Mittag-Leffler function, explained a link between such fitting and fractional-order differential equations,
and provided the Matlab routines for such fitting.

The approach to identification of variable-order systems, that we presented in this chapter, can be used
for creating variable-order models for many other processes.
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Chapter 9

Least squares? No! Least
circles!

9.1 Introduction

A student came to the final exam on statistical methods in economics. The professor asked him to
compute the linear regression of y versus x, and the student successfully computed some a and b of the
straight line y = a + bx. Then the professor asked the student to compute the linear regression of x
versus y, and the student immediately rewrote the previous equation into the form x = (1/b)y − (a/b).
The professor was expecting that the student would derive the equation of a conjugate regression line,
and evaluated the student’s answer as unsatisfactory. But was the student’s second line really incorrect?
That all depends on how the first line was calculated, which in turns depend on the criterion used for
determining a and b in the first line.

9.2 A bit of history

One could hardly name another method which is used as frequently as the method which is known as
the least squares method. At the same time, it is difficult to name another method which has been
accompanied by such strong and long lasting controversy.

The story of the birth of the least squares method is well covered in the literature and can be summarized
as follows. The priority in publication definitely belongs to A. -M. Legendre (Nouvelles méthodes pour
la détermination des orbites des comètes, 1805), who also gave the method its famous name. C. F. Gauss
(Theoria Motus Corporum Coelestium in Sectionibus Conicis Solem Ambientium, 1809) claimed, how-
ever, that he knew and used this method much earlier, about 10 years before Legendre’s publications.
In a letter to Gauss about his new book Legendre wrote that claims of priority should not be made
without a proof by previous publications. Gauss did not have such a publication. Despite this, Gauss
was very active in attacking Legendre. We see that his efforts were fruitful enough: in vast majority of
today’s textbooks the least squares method is attributed to Gauss without any further comments. In
fact, Gauss’s arguments for his priority were not perfect at all. His diaries with computations claimed
to be made by the least squares method were lost. His colleagues did not hurry to acknowledge that he
showed him those computations. Indeed, can one imagine that Gauss showed and explained the details of
his unpublished computations to his potential competitors? Only many years later did H.W.M. Olbers
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(1816) and F.W. Bessel (1832) mention that Gauss showed them something in that sense. But how
accurately could they really remember the details of some discussion that happened many years ago?
It is also known that H. C. Schumacher suggested repeating Gauss’s lost computations claimed to be
done by the least squares method. Gauss totally rejected this idea with the words that such attempts
would only suggest that he could not be trusted. This, however, has been done by Stigler (1981), who
could not reproduce Gauss’s results. Later Celmins (1998) also tried to repeat Gauss’s computations,
including the adjustments suggested by Stigler (1981), and arrived at the same conclusion that Gauss’s
results cannot be obtained by the least squares method. In other words, it is well known which method
Legendre used, and it is not clear at all which method was used by Gauss.

Assuming that it was Gauss who invented the least squares method, it is hard to believe that he did
not realize the huge potential of this method and its importance for applications. Knowing Gauss as
a prolific mathematician and looking at the present version of the least squares method, one can see a
certain contradiction.

9.3 Least squares method

It is difficult to find another method that is both so easy and at the same time so artificial. Figure 9.1 is
a version of the picture which appears frequently in the textbooks, slides, and blackboards as a geometric
illustration of the least squares method. Let us recall how this figure is created. A set of points (xk, yk),
k = 1, . . . , N , is approximated by a line y = a + bx. The classical least squares fitting consists in
minimizing the sum of the squares of the vertical deviations of a set of data points

E =
∑

i

[yi − (a+ bxi)]
2 (9.1)

from a chosen linear function y = a+bx. Each term in (9.1) corresponds to a square in Figure 9.1.

In the opinion of the authors, this picture is ugly. It does not have any sign of mathematical beauty. It
could be good for Malevich or Kandinsky, but not for Gauss. The line and the squares are in some visual
conflict. This conflict is even more obvious if we assume that the coordinate system is not rectangular.
Figure 9.2 gives an illustration. This conflict is absolutely obvious if we would consider, for example,
polar or elliptic coordinates. It is difficult to imagine that Gauss would have been happy with such visual
interpretation.

The key idea here is that the visualization and, more important, the resulting approximation is dependent
on the choice of the coordinate system. The vertical distance is not independent of the coordinate
system in which vertical is defined. But some definitions of distance are invariant to the coordinate
system!

Shape Recognition and Curve Detection

Nowadays, the distance between two points in k-dimensional space is widely used as an optimal fitting
criterion in the field of image processing for industrial and scientific applications, especially in problems
of shape recognition and curve detection. An ellipse (a circle) is an ellipse (a circle) in any coordinate
system. A parabola is a parabola in any coordinate system, too. Those objects are not defined by
equations, but by their general properties, that include the notion of distance. Indeed, everybody knows
from the school that a circle is a set of points in a plane that are at the same distance from a given point;
an ellipse is a set of point for which the sum of distance from two given points is constant; a parabola
is a set of points which are at the same distance from a given point and from a given straight line, and
so forth. We sometimes forget that those geometric objects are not related to any particular coordinate
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Figure 9.1: Least squares method – a classical illustration

Figure 9.2: Least squares method – non-rectangular coordinates
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system, although some coordinate systems are more suitable for describing those objects by equations.
Indeed, one can write simpler equations in a suitable coordinate system.

Figure 9.3 illustrates the fitting of an ellipse to a set of points in two-dimensional space. What must
one do to fit a set of points by a circle, or an ellipse, or another geometric shape? Simply speaking, one
has to draw a sample curve, measure the distance from each point of a set under consideration to the
curve, and consider the sum of these distances as a criterion that has to be minimized. Distance in shape
recognition and pattern detection is usually a function of squared (or absolute) deviations from the point
to the nearest point on the object. For doing this algorithmically using a computer, it is necessary to
set the whole picture into some coordinate system. The most common coordinate system we use is the
Cartesian rectangular system.

Figure 9.3: Fitting a set of points with an ellipse. The “best” ellipse should be the one
for which the sum of distances from the points to the ellipse is minimal

9.4 The Least Squares Method, revisited

Legendre published an idea on how to circumvent the computational problems that arise in the case of
trying to minimize the sum of orthogonal distances from data points to a straight line. The idea was to
replace the computational problem with a problem in calculus. Put the whole set of the objects (data
point and a line) in Cartesian coordinates. Instead of shortest distances from points to a line consider the
distances from points to the line in a direction that is parallel to the vertical axis (the vertical offsets).
This step would give a different criterion to be minimized:

E =
∑

i

|yi − f(xi, α1, α2, . . . , αn)|, (9.2)

and the minimization problem can be easily solved today using a computer and a suitable numerical
routine for minimization.

In the times of Gauss and Legendre, however, it would be natural to find an analytical solution to
this problem using the differential calculus. The absolute value is not a good function for this, since
its derivative is not continuous. It is possible that thinking in this way, Legendre got a nice idea. The
absolute value is a positive-valued function, but does not have a continuous derivative. Is there a positive
function close or somewhat similar to absolute value whose derivative is continuous? Of course, there is:
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Figure 9.4: “Least circles” viewpoint

the square. And this is how could appear the classical least squares fitting, which consists in minimizing
the sum of the squares of the vertical deviations of a set of data points

E =
∑

i

[yi − f(xi, α1, α2, . . . , αn)]2 (9.3)

from a chosen function f . And the minimization problem could be solved by the standard techniques of
the differential calculus.

9.5 The Method of Least Circles

To adjust a viewpoint, let us note that the criterion (9.3) can be painlessly replaced with

E = β
∑

i

[yi − f(xi, α1, α2, . . . , αn)]2. (9.4)

Indeed, multiplication by a positive number β does not affect the point of minimum. Only the minimum
value of the criterion function (E) will be multiplied by β, which itself is not the subject of interest at
this stage, since we look for the values of α1, α2, ... αn.

Taking β = π, we obtain

E =
∑

i

π[yi − f(xi, α1, α2, . . . , αn)]2. (9.5)

Geometrically, the formula (9.5) means the sum of the areas of the circles shown in Fig. 9.4(a). The
radii of the circles in Figure 9.4(a) are the vertical offsets of yi from the fitting line. Figure 9.4(a) is just
a reformulation of the standard geometric ”illustration” of the least squares method (recall Fig. 9.1).
Each of those circles has two points of intersection with the line. It is clear that one cannot consider
this picture as elegant. Changing the radii slightly, one can preserve n pairs of intersection of the circles
and the line. That is, the circles can be a little bigger or a little smaller and each one will still intersect
the line in two places.
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Figure 9.5: Least circles method – non-rectangular coordinates

Instead, suppose we adopt the perspective of the shortest distance to the line in two-dimensional space.
The resulting circles are shown in Figure 9.4(b). In this case, the fitting line is a tangent line to all
circles. The radii of the circles in Fig. 9.4(b) are equal to distances between the points (xi, yi) and the
fitting line, and this guarantees the unique picture.

The criterion to minimize in this case is

E =
∑

i

π
[
d
(

(xi, yi), f(x, α1, α2, . . . , αn)
)]2

, (9.6)

which is up to a constant multiplier π the formula known under the name of orthogonal regression. It is

also known as total least squares or as the errors in variables method. Here d
(

(xi, yi), f
)

denotes the

distance between the point (xi, yi) and the fitting line f .

There are several obvious advantages in using least circles (squared orthogonal distance) fitting.

1. The shortest (orthogonal) distance is the most natural viewpoint on any fitting.

2. The sum of orthogonal distances is invariant with respect to the choice of the system of coordinates
(see Fig. 9.5).

3. There are no conjugate regression lines, which appear after swapping x and y, because in the case
of orthogonal regression the fitting y = f(x) gives exactly the same line as the fitting x = f−1(y).
(So, the student from the story in the beginning of this article could be absolutely right, if he
used the orthogonal ”least circles” method to produce the first coefficients a and b instead of the
classical least squares method!)

4. There are no problems with causality (normally, determination of what is an independent variable
and what is a dependent variable is simply unclear or even impossible; this is always postulated).

5. Implementation of the orthogonal fitting does not depend on the number of spatial dimensions.

The 4th point above could be a sticking point for some. Often the goal is to predict an outcome. In
that case, one dimension (y) is of primary interest and one often considers distance in that dimension
of primary importance. Still, orthogonal regression can be less sensitive to outlying observations and
useful as a form of robust regression.
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Figure 9.6: Orthogonal distance from a point to a straight line.

9.6 Orthogonal Distance Linear Regression

In general, the use of orthogonal distance fitting requires the use of numerical routines for minimization
of the criteria. Fortunately for the student in the econometrics course, in the case of orthogonal distance
fitting it is possible to obtain simple formulas for evaluating the parameters of a straight line that fits
a given set of points in a plane (orthogonal linear regression problem). Indeed, the orthogonal distance
between a point Pi(xi, yi) and a straight line y = a+ bx is illustrated in Figure 9.6 with values

di =
∆yi√

1 + tan2α
=
|yi − (a+ bxi)|√

1 + b2
(9.7)

Following Legendre, instead of minimizing the sum of orthogonal distances minimize the sum of their
squares:

E2
⊥ =

n∑

i=1

[yi − (a+ bxi)]
2

1 + b2
=

1

1 + b2

n∑

i=1

[
yi − (a+ bxi)

]2
(9.8)

As usual, take partial derivatives with respect to the parameters a and b equal zero:

∂E2
⊥

∂a
= 0,

∂E2
⊥

∂b
= 0.

One obtains a system of two equations for determining the values of a and b.

Partial derivative with respect to the parameter a equal zero is

∂E2
⊥

∂a
=

−2

(1 + b2)

n∑

i=1

(yi − (a+ bxi)) = 0

which implies
n∑

i=1

(yi − (a+ bxi)) = 0
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n∑

i=1

yi = na+ b

n∑

i=1

xi,

where
ȳ = a+ bx̄ and a = ȳ − bx̄

Partial derivative with respect to the parameter b equal zero is

∂E2
⊥

∂b
=

(1 + b2)[−2
∑n

i=1
(yi − (a+ bxi))− 2b

∑n

i=1
(yi − (a+ bxi))]

2

(1 + b2)2

=
−2b

∑n

i=1
(yi − (a+ bxi))

2

(1 + b2)
= 0

Since
n∑

i=1

(yi − (a+ bxi)) = 0

so

0 =

n∑

i=1

(yi − (a+ bxi))
2 =

n∑

i=1

(yi − (ȳ − bx̄+ bxi))
2

=

n∑

i=1

[(yi − ȳ)− b(xi − x̄)]2

Quadratic equation for finding b is:

b2Sxx − 2bSxSy + Syy = 0

where

b1,2 =
−SxSy ±

√
(SxSy)2 − 4SxSy

S2
xx

So, there are two possible fitting lines, y = a1 + b1x and y = a2 + b2x, which both run though the
centroid (x̄, ȳ) and are mutually orthogonal, since b1b2 = −1. The proper fitting line (the proper pair of
the values of a and b) can be determined by a smaller value of the criterion (9.8).

This has a very simple geometric interpretation. Indeed, the set of point that we try to fit with a straight
line is a ”cloud” of points in 2D. One of the possible fitting lines coincides with the direction of the main
”axis” of that ”cloud”, and the second line corresponds to the direction of the ”width” of that ”cloud”.
It is worth mentioning that this is an elementary illustration of the relationship between the orthogonal
distance fitting, on one side, and the principal components analysis (PCA), on the other. There are a few
mathematical tools which can be used for orthogonal distance fitting. For solving the linear problems
in n-dimensional space the PCA method is appropriate. Generally, for solving the linear and non-linear
problem the singular value decomposition (SVD) method and QR decomposition method are suitable.
SVD is widely used in statistics where it is related to the PCA method. Now PCA is mostly used as a
tool in exploratory data analysis and for making predictive models but the applicability of the PCA is
limited by several assumptions (linearity, statistical importance of mean and covariance, etc.).

9.7 Least Circles, Least Spheres, Least Hyperspheres!

Now let us consider the 3D case. Suppose we have a set of data points, which look to be close to a
straight or curved line in 3D, and we want to obtain the equation of the optimal fitting line. First,
moving from 2D to 3D makes the idea of ”least squares” absolutely useless. The only natural criterion
is the minimum sum of distances from the data points to the fitting line, and this criterion can be in



REFERENCES 171

Legendre’s manner replaced with the volumes of spheres with the radii equal to the distances from the
data points to the fitting line,

E3
⊥ =

∑

i

4π

3

[
d
(

(xi, yi, zi), Fx,y,z,α1,α2,...,αn

)]3
, (9.9)

where Fx,y,z,α1,α2,...,αn denotes a line in 3D described by implicit or explicit equations containing n
parameters α1, α2, . . . , αn.

The idea is illustrated in Figure 9.7, where F is a straight line.
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Figure 9.7: Least spheres fitting of data by a line in 3D

Obviously, this approach can be used in n-dimensional space too, where we have to minimize the sum
of hypervolumes of the hyperspheres with radii that are equal to the distances from the data points to
the fitting line. Besides fitting data by lines, we can consider fitting data by geometric shapes in n-
dimensional space (recall the example of fitting data points by an ellipse in previous section, or imagine
fitting a set of 3D data by the surface of an ellipsoid), which is a part of image processing theory.
Such an approach can have many unexpected applications, like, for example, the description of national
economies in state space, where the 3D data describing the behavior of national economies have been
fitted by planes. In other words, there is a uniform approach to fitting lines (either straight or curved)
and shapes in n-dimensional space by minimizing the volumes of n-dimensional spheres with radii equal
to the orthogonal distances from the data points to the fitting line or shape. Maybe Gauss’s method,
that has not been successfully reproduced until today, was close to such a viewpoint?
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